alloc/collections/btree/map.rs
1use core::borrow::Borrow;
2use core::cmp::Ordering;
3use core::error::Error;
4use core::fmt::{self, Debug};
5use core::hash::{Hash, Hasher};
6use core::iter::FusedIterator;
7use core::marker::PhantomData;
8use core::mem::{self, ManuallyDrop};
9use core::ops::{Bound, Index, RangeBounds};
10use core::ptr;
11
12use super::borrow::DormantMutRef;
13use super::dedup_sorted_iter::DedupSortedIter;
14use super::navigate::{LazyLeafRange, LeafRange};
15use super::node::ForceResult::*;
16use super::node::{self, Handle, NodeRef, Root, marker};
17use super::search::SearchBound;
18use super::search::SearchResult::*;
19use super::set_val::SetValZST;
20use crate::alloc::{Allocator, Global};
21use crate::vec::Vec;
22
23mod entry;
24
25use Entry::*;
26#[stable(feature = "rust1", since = "1.0.0")]
27pub use entry::{Entry, OccupiedEntry, OccupiedError, VacantEntry};
28
29/// Minimum number of elements in a node that is not a root.
30/// We might temporarily have fewer elements during methods.
31pub(super) const MIN_LEN: usize = node::MIN_LEN_AFTER_SPLIT;
32
33// A tree in a `BTreeMap` is a tree in the `node` module with additional invariants:
34// - Keys must appear in ascending order (according to the key's type).
35// - Every non-leaf node contains at least 1 element (has at least 2 children).
36// - Every non-root node contains at least MIN_LEN elements.
37//
38// An empty map is represented either by the absence of a root node or by a
39// root node that is an empty leaf.
40
41/// An ordered map based on a [B-Tree].
42///
43/// B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing
44/// the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal
45/// choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum amount of
46/// comparisons necessary to find an element (log<sub>2</sub>n). However, in practice the way this
47/// is done is *very* inefficient for modern computer architectures. In particular, every element
48/// is stored in its own individually heap-allocated node. This means that every single insertion
49/// triggers a heap-allocation, and every single comparison should be a cache-miss. Since these
50/// are both notably expensive things to do in practice, we are forced to, at the very least,
51/// reconsider the BST strategy.
52///
53/// A B-Tree instead makes each node contain B-1 to 2B-1 elements in a contiguous array. By doing
54/// this, we reduce the number of allocations by a factor of B, and improve cache efficiency in
55/// searches. However, this does mean that searches will have to do *more* comparisons on average.
56/// The precise number of comparisons depends on the node search strategy used. For optimal cache
57/// efficiency, one could search the nodes linearly. For optimal comparisons, one could search
58/// the node using binary search. As a compromise, one could also perform a linear search
59/// that initially only checks every i<sup>th</sup> element for some choice of i.
60///
61/// Currently, our implementation simply performs naive linear search. This provides excellent
62/// performance on *small* nodes of elements which are cheap to compare. However in the future we
63/// would like to further explore choosing the optimal search strategy based on the choice of B,
64/// and possibly other factors. Using linear search, searching for a random element is expected
65/// to take B * log(n) comparisons, which is generally worse than a BST. In practice,
66/// however, performance is excellent.
67///
68/// It is a logic error for a key to be modified in such a way that the key's ordering relative to
69/// any other key, as determined by the [`Ord`] trait, changes while it is in the map. This is
70/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
71/// The behavior resulting from such a logic error is not specified, but will be encapsulated to the
72/// `BTreeMap` that observed the logic error and not result in undefined behavior. This could
73/// include panics, incorrect results, aborts, memory leaks, and non-termination.
74///
75/// Iterators obtained from functions such as [`BTreeMap::iter`], [`BTreeMap::into_iter`], [`BTreeMap::values`], or
76/// [`BTreeMap::keys`] produce their items in order by key, and take worst-case logarithmic and
77/// amortized constant time per item returned.
78///
79/// [B-Tree]: https://en.wikipedia.org/wiki/B-tree
80/// [`Cell`]: core::cell::Cell
81/// [`RefCell`]: core::cell::RefCell
82///
83/// # Examples
84///
85/// ```
86/// use std::collections::BTreeMap;
87///
88/// // type inference lets us omit an explicit type signature (which
89/// // would be `BTreeMap<&str, &str>` in this example).
90/// let mut movie_reviews = BTreeMap::new();
91///
92/// // review some movies.
93/// movie_reviews.insert("Office Space", "Deals with real issues in the workplace.");
94/// movie_reviews.insert("Pulp Fiction", "Masterpiece.");
95/// movie_reviews.insert("The Godfather", "Very enjoyable.");
96/// movie_reviews.insert("The Blues Brothers", "Eye lyked it a lot.");
97///
98/// // check for a specific one.
99/// if !movie_reviews.contains_key("Les Misérables") {
100/// println!("We've got {} reviews, but Les Misérables ain't one.",
101/// movie_reviews.len());
102/// }
103///
104/// // oops, this review has a lot of spelling mistakes, let's delete it.
105/// movie_reviews.remove("The Blues Brothers");
106///
107/// // look up the values associated with some keys.
108/// let to_find = ["Up!", "Office Space"];
109/// for movie in &to_find {
110/// match movie_reviews.get(movie) {
111/// Some(review) => println!("{movie}: {review}"),
112/// None => println!("{movie} is unreviewed.")
113/// }
114/// }
115///
116/// // Look up the value for a key (will panic if the key is not found).
117/// println!("Movie review: {}", movie_reviews["Office Space"]);
118///
119/// // iterate over everything.
120/// for (movie, review) in &movie_reviews {
121/// println!("{movie}: \"{review}\"");
122/// }
123/// ```
124///
125/// A `BTreeMap` with a known list of items can be initialized from an array:
126///
127/// ```
128/// use std::collections::BTreeMap;
129///
130/// let solar_distance = BTreeMap::from([
131/// ("Mercury", 0.4),
132/// ("Venus", 0.7),
133/// ("Earth", 1.0),
134/// ("Mars", 1.5),
135/// ]);
136/// ```
137///
138/// `BTreeMap` implements an [`Entry API`], which allows for complex
139/// methods of getting, setting, updating and removing keys and their values:
140///
141/// [`Entry API`]: BTreeMap::entry
142///
143/// ```
144/// use std::collections::BTreeMap;
145///
146/// // type inference lets us omit an explicit type signature (which
147/// // would be `BTreeMap<&str, u8>` in this example).
148/// let mut player_stats = BTreeMap::new();
149///
150/// fn random_stat_buff() -> u8 {
151/// // could actually return some random value here - let's just return
152/// // some fixed value for now
153/// 42
154/// }
155///
156/// // insert a key only if it doesn't already exist
157/// player_stats.entry("health").or_insert(100);
158///
159/// // insert a key using a function that provides a new value only if it
160/// // doesn't already exist
161/// player_stats.entry("defence").or_insert_with(random_stat_buff);
162///
163/// // update a key, guarding against the key possibly not being set
164/// let stat = player_stats.entry("attack").or_insert(100);
165/// *stat += random_stat_buff();
166///
167/// // modify an entry before an insert with in-place mutation
168/// player_stats.entry("mana").and_modify(|mana| *mana += 200).or_insert(100);
169/// ```
170#[stable(feature = "rust1", since = "1.0.0")]
171#[cfg_attr(not(test), rustc_diagnostic_item = "BTreeMap")]
172#[rustc_insignificant_dtor]
173pub struct BTreeMap<
174 K,
175 V,
176 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
177> {
178 root: Option<Root<K, V>>,
179 length: usize,
180 /// `ManuallyDrop` to control drop order (needs to be dropped after all the nodes).
181 pub(super) alloc: ManuallyDrop<A>,
182 // For dropck; the `Box` avoids making the `Unpin` impl more strict than before
183 _marker: PhantomData<crate::boxed::Box<(K, V), A>>,
184}
185
186#[stable(feature = "btree_drop", since = "1.7.0")]
187unsafe impl<#[may_dangle] K, #[may_dangle] V, A: Allocator + Clone> Drop for BTreeMap<K, V, A> {
188 fn drop(&mut self) {
189 drop(unsafe { ptr::read(self) }.into_iter())
190 }
191}
192
193// FIXME: This implementation is "wrong", but changing it would be a breaking change.
194// (The bounds of the automatic `UnwindSafe` implementation have been like this since Rust 1.50.)
195// Maybe we can fix it nonetheless with a crater run, or if the `UnwindSafe`
196// traits are deprecated, or disarmed (no longer causing hard errors) in the future.
197#[stable(feature = "btree_unwindsafe", since = "1.64.0")]
198impl<K, V, A: Allocator + Clone> core::panic::UnwindSafe for BTreeMap<K, V, A>
199where
200 A: core::panic::UnwindSafe,
201 K: core::panic::RefUnwindSafe,
202 V: core::panic::RefUnwindSafe,
203{
204}
205
206#[stable(feature = "rust1", since = "1.0.0")]
207impl<K: Clone, V: Clone, A: Allocator + Clone> Clone for BTreeMap<K, V, A> {
208 fn clone(&self) -> BTreeMap<K, V, A> {
209 fn clone_subtree<'a, K: Clone, V: Clone, A: Allocator + Clone>(
210 node: NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal>,
211 alloc: A,
212 ) -> BTreeMap<K, V, A>
213 where
214 K: 'a,
215 V: 'a,
216 {
217 match node.force() {
218 Leaf(leaf) => {
219 let mut out_tree = BTreeMap {
220 root: Some(Root::new(alloc.clone())),
221 length: 0,
222 alloc: ManuallyDrop::new(alloc),
223 _marker: PhantomData,
224 };
225
226 {
227 let root = out_tree.root.as_mut().unwrap(); // unwrap succeeds because we just wrapped
228 let mut out_node = match root.borrow_mut().force() {
229 Leaf(leaf) => leaf,
230 Internal(_) => unreachable!(),
231 };
232
233 let mut in_edge = leaf.first_edge();
234 while let Ok(kv) = in_edge.right_kv() {
235 let (k, v) = kv.into_kv();
236 in_edge = kv.right_edge();
237
238 out_node.push(k.clone(), v.clone());
239 out_tree.length += 1;
240 }
241 }
242
243 out_tree
244 }
245 Internal(internal) => {
246 let mut out_tree =
247 clone_subtree(internal.first_edge().descend(), alloc.clone());
248
249 {
250 let out_root = out_tree.root.as_mut().unwrap();
251 let mut out_node = out_root.push_internal_level(alloc.clone());
252 let mut in_edge = internal.first_edge();
253 while let Ok(kv) = in_edge.right_kv() {
254 let (k, v) = kv.into_kv();
255 in_edge = kv.right_edge();
256
257 let k = (*k).clone();
258 let v = (*v).clone();
259 let subtree = clone_subtree(in_edge.descend(), alloc.clone());
260
261 // We can't destructure subtree directly
262 // because BTreeMap implements Drop
263 let (subroot, sublength) = unsafe {
264 let subtree = ManuallyDrop::new(subtree);
265 let root = ptr::read(&subtree.root);
266 let length = subtree.length;
267 (root, length)
268 };
269
270 out_node.push(
271 k,
272 v,
273 subroot.unwrap_or_else(|| Root::new(alloc.clone())),
274 );
275 out_tree.length += 1 + sublength;
276 }
277 }
278
279 out_tree
280 }
281 }
282 }
283
284 if self.is_empty() {
285 BTreeMap::new_in((*self.alloc).clone())
286 } else {
287 clone_subtree(self.root.as_ref().unwrap().reborrow(), (*self.alloc).clone()) // unwrap succeeds because not empty
288 }
289 }
290}
291
292// Internal functionality for `BTreeSet`.
293impl<K, A: Allocator + Clone> BTreeMap<K, SetValZST, A> {
294 pub(super) fn replace(&mut self, key: K) -> Option<K>
295 where
296 K: Ord,
297 {
298 let (map, dormant_map) = DormantMutRef::new(self);
299 let root_node =
300 map.root.get_or_insert_with(|| Root::new((*map.alloc).clone())).borrow_mut();
301 match root_node.search_tree::<K>(&key) {
302 Found(mut kv) => Some(mem::replace(kv.key_mut(), key)),
303 GoDown(handle) => {
304 VacantEntry {
305 key,
306 handle: Some(handle),
307 dormant_map,
308 alloc: (*map.alloc).clone(),
309 _marker: PhantomData,
310 }
311 .insert(SetValZST);
312 None
313 }
314 }
315 }
316
317 pub(super) fn get_or_insert_with<Q: ?Sized, F>(&mut self, q: &Q, f: F) -> &K
318 where
319 K: Borrow<Q> + Ord,
320 Q: Ord,
321 F: FnOnce(&Q) -> K,
322 {
323 let (map, dormant_map) = DormantMutRef::new(self);
324 let root_node =
325 map.root.get_or_insert_with(|| Root::new((*map.alloc).clone())).borrow_mut();
326 match root_node.search_tree(q) {
327 Found(handle) => handle.into_kv_mut().0,
328 GoDown(handle) => {
329 let key = f(q);
330 assert!(*key.borrow() == *q, "new value is not equal");
331 VacantEntry {
332 key,
333 handle: Some(handle),
334 dormant_map,
335 alloc: (*map.alloc).clone(),
336 _marker: PhantomData,
337 }
338 .insert_entry(SetValZST)
339 .into_key()
340 }
341 }
342 }
343}
344
345/// An iterator over the entries of a `BTreeMap`.
346///
347/// This `struct` is created by the [`iter`] method on [`BTreeMap`]. See its
348/// documentation for more.
349///
350/// [`iter`]: BTreeMap::iter
351#[must_use = "iterators are lazy and do nothing unless consumed"]
352#[stable(feature = "rust1", since = "1.0.0")]
353pub struct Iter<'a, K: 'a, V: 'a> {
354 range: LazyLeafRange<marker::Immut<'a>, K, V>,
355 length: usize,
356}
357
358#[stable(feature = "collection_debug", since = "1.17.0")]
359impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Iter<'_, K, V> {
360 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
361 f.debug_list().entries(self.clone()).finish()
362 }
363}
364
365#[stable(feature = "default_iters", since = "1.70.0")]
366impl<'a, K: 'a, V: 'a> Default for Iter<'a, K, V> {
367 /// Creates an empty `btree_map::Iter`.
368 ///
369 /// ```
370 /// # use std::collections::btree_map;
371 /// let iter: btree_map::Iter<'_, u8, u8> = Default::default();
372 /// assert_eq!(iter.len(), 0);
373 /// ```
374 fn default() -> Self {
375 Iter { range: Default::default(), length: 0 }
376 }
377}
378
379/// A mutable iterator over the entries of a `BTreeMap`.
380///
381/// This `struct` is created by the [`iter_mut`] method on [`BTreeMap`]. See its
382/// documentation for more.
383///
384/// [`iter_mut`]: BTreeMap::iter_mut
385#[stable(feature = "rust1", since = "1.0.0")]
386pub struct IterMut<'a, K: 'a, V: 'a> {
387 range: LazyLeafRange<marker::ValMut<'a>, K, V>,
388 length: usize,
389
390 // Be invariant in `K` and `V`
391 _marker: PhantomData<&'a mut (K, V)>,
392}
393
394#[must_use = "iterators are lazy and do nothing unless consumed"]
395#[stable(feature = "collection_debug", since = "1.17.0")]
396impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IterMut<'_, K, V> {
397 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
398 let range = Iter { range: self.range.reborrow(), length: self.length };
399 f.debug_list().entries(range).finish()
400 }
401}
402
403#[stable(feature = "default_iters", since = "1.70.0")]
404impl<'a, K: 'a, V: 'a> Default for IterMut<'a, K, V> {
405 /// Creates an empty `btree_map::IterMut`.
406 ///
407 /// ```
408 /// # use std::collections::btree_map;
409 /// let iter: btree_map::IterMut<'_, u8, u8> = Default::default();
410 /// assert_eq!(iter.len(), 0);
411 /// ```
412 fn default() -> Self {
413 IterMut { range: Default::default(), length: 0, _marker: PhantomData {} }
414 }
415}
416
417/// An owning iterator over the entries of a `BTreeMap`, sorted by key.
418///
419/// This `struct` is created by the [`into_iter`] method on [`BTreeMap`]
420/// (provided by the [`IntoIterator`] trait). See its documentation for more.
421///
422/// [`into_iter`]: IntoIterator::into_iter
423#[stable(feature = "rust1", since = "1.0.0")]
424#[rustc_insignificant_dtor]
425pub struct IntoIter<
426 K,
427 V,
428 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
429> {
430 range: LazyLeafRange<marker::Dying, K, V>,
431 length: usize,
432 /// The BTreeMap will outlive this IntoIter so we don't care about drop order for `alloc`.
433 alloc: A,
434}
435
436impl<K, V, A: Allocator + Clone> IntoIter<K, V, A> {
437 /// Returns an iterator of references over the remaining items.
438 #[inline]
439 pub(super) fn iter(&self) -> Iter<'_, K, V> {
440 Iter { range: self.range.reborrow(), length: self.length }
441 }
442}
443
444#[stable(feature = "collection_debug", since = "1.17.0")]
445impl<K: Debug, V: Debug, A: Allocator + Clone> Debug for IntoIter<K, V, A> {
446 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
447 f.debug_list().entries(self.iter()).finish()
448 }
449}
450
451#[stable(feature = "default_iters", since = "1.70.0")]
452impl<K, V, A> Default for IntoIter<K, V, A>
453where
454 A: Allocator + Default + Clone,
455{
456 /// Creates an empty `btree_map::IntoIter`.
457 ///
458 /// ```
459 /// # use std::collections::btree_map;
460 /// let iter: btree_map::IntoIter<u8, u8> = Default::default();
461 /// assert_eq!(iter.len(), 0);
462 /// ```
463 fn default() -> Self {
464 IntoIter { range: Default::default(), length: 0, alloc: Default::default() }
465 }
466}
467
468/// An iterator over the keys of a `BTreeMap`.
469///
470/// This `struct` is created by the [`keys`] method on [`BTreeMap`]. See its
471/// documentation for more.
472///
473/// [`keys`]: BTreeMap::keys
474#[must_use = "iterators are lazy and do nothing unless consumed"]
475#[stable(feature = "rust1", since = "1.0.0")]
476pub struct Keys<'a, K, V> {
477 inner: Iter<'a, K, V>,
478}
479
480#[stable(feature = "collection_debug", since = "1.17.0")]
481impl<K: fmt::Debug, V> fmt::Debug for Keys<'_, K, V> {
482 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
483 f.debug_list().entries(self.clone()).finish()
484 }
485}
486
487/// An iterator over the values of a `BTreeMap`.
488///
489/// This `struct` is created by the [`values`] method on [`BTreeMap`]. See its
490/// documentation for more.
491///
492/// [`values`]: BTreeMap::values
493#[must_use = "iterators are lazy and do nothing unless consumed"]
494#[stable(feature = "rust1", since = "1.0.0")]
495pub struct Values<'a, K, V> {
496 inner: Iter<'a, K, V>,
497}
498
499#[stable(feature = "collection_debug", since = "1.17.0")]
500impl<K, V: fmt::Debug> fmt::Debug for Values<'_, K, V> {
501 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
502 f.debug_list().entries(self.clone()).finish()
503 }
504}
505
506/// A mutable iterator over the values of a `BTreeMap`.
507///
508/// This `struct` is created by the [`values_mut`] method on [`BTreeMap`]. See its
509/// documentation for more.
510///
511/// [`values_mut`]: BTreeMap::values_mut
512#[must_use = "iterators are lazy and do nothing unless consumed"]
513#[stable(feature = "map_values_mut", since = "1.10.0")]
514pub struct ValuesMut<'a, K, V> {
515 inner: IterMut<'a, K, V>,
516}
517
518#[stable(feature = "map_values_mut", since = "1.10.0")]
519impl<K, V: fmt::Debug> fmt::Debug for ValuesMut<'_, K, V> {
520 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
521 f.debug_list().entries(self.inner.iter().map(|(_, val)| val)).finish()
522 }
523}
524
525/// An owning iterator over the keys of a `BTreeMap`.
526///
527/// This `struct` is created by the [`into_keys`] method on [`BTreeMap`].
528/// See its documentation for more.
529///
530/// [`into_keys`]: BTreeMap::into_keys
531#[must_use = "iterators are lazy and do nothing unless consumed"]
532#[stable(feature = "map_into_keys_values", since = "1.54.0")]
533pub struct IntoKeys<K, V, A: Allocator + Clone = Global> {
534 inner: IntoIter<K, V, A>,
535}
536
537#[stable(feature = "map_into_keys_values", since = "1.54.0")]
538impl<K: fmt::Debug, V, A: Allocator + Clone> fmt::Debug for IntoKeys<K, V, A> {
539 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
540 f.debug_list().entries(self.inner.iter().map(|(key, _)| key)).finish()
541 }
542}
543
544/// An owning iterator over the values of a `BTreeMap`.
545///
546/// This `struct` is created by the [`into_values`] method on [`BTreeMap`].
547/// See its documentation for more.
548///
549/// [`into_values`]: BTreeMap::into_values
550#[must_use = "iterators are lazy and do nothing unless consumed"]
551#[stable(feature = "map_into_keys_values", since = "1.54.0")]
552pub struct IntoValues<
553 K,
554 V,
555 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
556> {
557 inner: IntoIter<K, V, A>,
558}
559
560#[stable(feature = "map_into_keys_values", since = "1.54.0")]
561impl<K, V: fmt::Debug, A: Allocator + Clone> fmt::Debug for IntoValues<K, V, A> {
562 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
563 f.debug_list().entries(self.inner.iter().map(|(_, val)| val)).finish()
564 }
565}
566
567/// An iterator over a sub-range of entries in a `BTreeMap`.
568///
569/// This `struct` is created by the [`range`] method on [`BTreeMap`]. See its
570/// documentation for more.
571///
572/// [`range`]: BTreeMap::range
573#[must_use = "iterators are lazy and do nothing unless consumed"]
574#[stable(feature = "btree_range", since = "1.17.0")]
575pub struct Range<'a, K: 'a, V: 'a> {
576 inner: LeafRange<marker::Immut<'a>, K, V>,
577}
578
579#[stable(feature = "collection_debug", since = "1.17.0")]
580impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Range<'_, K, V> {
581 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
582 f.debug_list().entries(self.clone()).finish()
583 }
584}
585
586/// A mutable iterator over a sub-range of entries in a `BTreeMap`.
587///
588/// This `struct` is created by the [`range_mut`] method on [`BTreeMap`]. See its
589/// documentation for more.
590///
591/// [`range_mut`]: BTreeMap::range_mut
592#[must_use = "iterators are lazy and do nothing unless consumed"]
593#[stable(feature = "btree_range", since = "1.17.0")]
594pub struct RangeMut<'a, K: 'a, V: 'a> {
595 inner: LeafRange<marker::ValMut<'a>, K, V>,
596
597 // Be invariant in `K` and `V`
598 _marker: PhantomData<&'a mut (K, V)>,
599}
600
601#[stable(feature = "collection_debug", since = "1.17.0")]
602impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for RangeMut<'_, K, V> {
603 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
604 let range = Range { inner: self.inner.reborrow() };
605 f.debug_list().entries(range).finish()
606 }
607}
608
609impl<K, V> BTreeMap<K, V> {
610 /// Makes a new, empty `BTreeMap`.
611 ///
612 /// Does not allocate anything on its own.
613 ///
614 /// # Examples
615 ///
616 /// ```
617 /// use std::collections::BTreeMap;
618 ///
619 /// let mut map = BTreeMap::new();
620 ///
621 /// // entries can now be inserted into the empty map
622 /// map.insert(1, "a");
623 /// ```
624 #[stable(feature = "rust1", since = "1.0.0")]
625 #[rustc_const_stable(feature = "const_btree_new", since = "1.66.0")]
626 #[inline]
627 #[must_use]
628 pub const fn new() -> BTreeMap<K, V> {
629 BTreeMap { root: None, length: 0, alloc: ManuallyDrop::new(Global), _marker: PhantomData }
630 }
631}
632
633impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
634 /// Clears the map, removing all elements.
635 ///
636 /// # Examples
637 ///
638 /// ```
639 /// use std::collections::BTreeMap;
640 ///
641 /// let mut a = BTreeMap::new();
642 /// a.insert(1, "a");
643 /// a.clear();
644 /// assert!(a.is_empty());
645 /// ```
646 #[stable(feature = "rust1", since = "1.0.0")]
647 pub fn clear(&mut self) {
648 // avoid moving the allocator
649 drop(BTreeMap {
650 root: mem::replace(&mut self.root, None),
651 length: mem::replace(&mut self.length, 0),
652 alloc: self.alloc.clone(),
653 _marker: PhantomData,
654 });
655 }
656
657 /// Makes a new empty BTreeMap with a reasonable choice for B.
658 ///
659 /// # Examples
660 ///
661 /// ```
662 /// # #![feature(allocator_api)]
663 /// # #![feature(btreemap_alloc)]
664 /// use std::collections::BTreeMap;
665 /// use std::alloc::Global;
666 ///
667 /// let mut map = BTreeMap::new_in(Global);
668 ///
669 /// // entries can now be inserted into the empty map
670 /// map.insert(1, "a");
671 /// ```
672 #[unstable(feature = "btreemap_alloc", issue = "32838")]
673 pub const fn new_in(alloc: A) -> BTreeMap<K, V, A> {
674 BTreeMap { root: None, length: 0, alloc: ManuallyDrop::new(alloc), _marker: PhantomData }
675 }
676}
677
678impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
679 /// Returns a reference to the value corresponding to the key.
680 ///
681 /// The key may be any borrowed form of the map's key type, but the ordering
682 /// on the borrowed form *must* match the ordering on the key type.
683 ///
684 /// # Examples
685 ///
686 /// ```
687 /// use std::collections::BTreeMap;
688 ///
689 /// let mut map = BTreeMap::new();
690 /// map.insert(1, "a");
691 /// assert_eq!(map.get(&1), Some(&"a"));
692 /// assert_eq!(map.get(&2), None);
693 /// ```
694 #[stable(feature = "rust1", since = "1.0.0")]
695 pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V>
696 where
697 K: Borrow<Q> + Ord,
698 Q: Ord,
699 {
700 let root_node = self.root.as_ref()?.reborrow();
701 match root_node.search_tree(key) {
702 Found(handle) => Some(handle.into_kv().1),
703 GoDown(_) => None,
704 }
705 }
706
707 /// Returns the key-value pair corresponding to the supplied key. This is
708 /// potentially useful:
709 /// - for key types where non-identical keys can be considered equal;
710 /// - for getting the `&K` stored key value from a borrowed `&Q` lookup key; or
711 /// - for getting a reference to a key with the same lifetime as the collection.
712 ///
713 /// The supplied key may be any borrowed form of the map's key type, but the ordering
714 /// on the borrowed form *must* match the ordering on the key type.
715 ///
716 /// # Examples
717 ///
718 /// ```
719 /// use std::cmp::Ordering;
720 /// use std::collections::BTreeMap;
721 ///
722 /// #[derive(Clone, Copy, Debug)]
723 /// struct S {
724 /// id: u32,
725 /// # #[allow(unused)] // prevents a "field `name` is never read" error
726 /// name: &'static str, // ignored by equality and ordering operations
727 /// }
728 ///
729 /// impl PartialEq for S {
730 /// fn eq(&self, other: &S) -> bool {
731 /// self.id == other.id
732 /// }
733 /// }
734 ///
735 /// impl Eq for S {}
736 ///
737 /// impl PartialOrd for S {
738 /// fn partial_cmp(&self, other: &S) -> Option<Ordering> {
739 /// self.id.partial_cmp(&other.id)
740 /// }
741 /// }
742 ///
743 /// impl Ord for S {
744 /// fn cmp(&self, other: &S) -> Ordering {
745 /// self.id.cmp(&other.id)
746 /// }
747 /// }
748 ///
749 /// let j_a = S { id: 1, name: "Jessica" };
750 /// let j_b = S { id: 1, name: "Jess" };
751 /// let p = S { id: 2, name: "Paul" };
752 /// assert_eq!(j_a, j_b);
753 ///
754 /// let mut map = BTreeMap::new();
755 /// map.insert(j_a, "Paris");
756 /// assert_eq!(map.get_key_value(&j_a), Some((&j_a, &"Paris")));
757 /// assert_eq!(map.get_key_value(&j_b), Some((&j_a, &"Paris"))); // the notable case
758 /// assert_eq!(map.get_key_value(&p), None);
759 /// ```
760 #[stable(feature = "map_get_key_value", since = "1.40.0")]
761 pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)>
762 where
763 K: Borrow<Q> + Ord,
764 Q: Ord,
765 {
766 let root_node = self.root.as_ref()?.reborrow();
767 match root_node.search_tree(k) {
768 Found(handle) => Some(handle.into_kv()),
769 GoDown(_) => None,
770 }
771 }
772
773 /// Returns the first key-value pair in the map.
774 /// The key in this pair is the minimum key in the map.
775 ///
776 /// # Examples
777 ///
778 /// ```
779 /// use std::collections::BTreeMap;
780 ///
781 /// let mut map = BTreeMap::new();
782 /// assert_eq!(map.first_key_value(), None);
783 /// map.insert(1, "b");
784 /// map.insert(2, "a");
785 /// assert_eq!(map.first_key_value(), Some((&1, &"b")));
786 /// ```
787 #[stable(feature = "map_first_last", since = "1.66.0")]
788 pub fn first_key_value(&self) -> Option<(&K, &V)>
789 where
790 K: Ord,
791 {
792 let root_node = self.root.as_ref()?.reborrow();
793 root_node.first_leaf_edge().right_kv().ok().map(Handle::into_kv)
794 }
795
796 /// Returns the first entry in the map for in-place manipulation.
797 /// The key of this entry is the minimum key in the map.
798 ///
799 /// # Examples
800 ///
801 /// ```
802 /// use std::collections::BTreeMap;
803 ///
804 /// let mut map = BTreeMap::new();
805 /// map.insert(1, "a");
806 /// map.insert(2, "b");
807 /// if let Some(mut entry) = map.first_entry() {
808 /// if *entry.key() > 0 {
809 /// entry.insert("first");
810 /// }
811 /// }
812 /// assert_eq!(*map.get(&1).unwrap(), "first");
813 /// assert_eq!(*map.get(&2).unwrap(), "b");
814 /// ```
815 #[stable(feature = "map_first_last", since = "1.66.0")]
816 pub fn first_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
817 where
818 K: Ord,
819 {
820 let (map, dormant_map) = DormantMutRef::new(self);
821 let root_node = map.root.as_mut()?.borrow_mut();
822 let kv = root_node.first_leaf_edge().right_kv().ok()?;
823 Some(OccupiedEntry {
824 handle: kv.forget_node_type(),
825 dormant_map,
826 alloc: (*map.alloc).clone(),
827 _marker: PhantomData,
828 })
829 }
830
831 /// Removes and returns the first element in the map.
832 /// The key of this element is the minimum key that was in the map.
833 ///
834 /// # Examples
835 ///
836 /// Draining elements in ascending order, while keeping a usable map each iteration.
837 ///
838 /// ```
839 /// use std::collections::BTreeMap;
840 ///
841 /// let mut map = BTreeMap::new();
842 /// map.insert(1, "a");
843 /// map.insert(2, "b");
844 /// while let Some((key, _val)) = map.pop_first() {
845 /// assert!(map.iter().all(|(k, _v)| *k > key));
846 /// }
847 /// assert!(map.is_empty());
848 /// ```
849 #[stable(feature = "map_first_last", since = "1.66.0")]
850 pub fn pop_first(&mut self) -> Option<(K, V)>
851 where
852 K: Ord,
853 {
854 self.first_entry().map(|entry| entry.remove_entry())
855 }
856
857 /// Returns the last key-value pair in the map.
858 /// The key in this pair is the maximum key in the map.
859 ///
860 /// # Examples
861 ///
862 /// ```
863 /// use std::collections::BTreeMap;
864 ///
865 /// let mut map = BTreeMap::new();
866 /// map.insert(1, "b");
867 /// map.insert(2, "a");
868 /// assert_eq!(map.last_key_value(), Some((&2, &"a")));
869 /// ```
870 #[stable(feature = "map_first_last", since = "1.66.0")]
871 pub fn last_key_value(&self) -> Option<(&K, &V)>
872 where
873 K: Ord,
874 {
875 let root_node = self.root.as_ref()?.reborrow();
876 root_node.last_leaf_edge().left_kv().ok().map(Handle::into_kv)
877 }
878
879 /// Returns the last entry in the map for in-place manipulation.
880 /// The key of this entry is the maximum key in the map.
881 ///
882 /// # Examples
883 ///
884 /// ```
885 /// use std::collections::BTreeMap;
886 ///
887 /// let mut map = BTreeMap::new();
888 /// map.insert(1, "a");
889 /// map.insert(2, "b");
890 /// if let Some(mut entry) = map.last_entry() {
891 /// if *entry.key() > 0 {
892 /// entry.insert("last");
893 /// }
894 /// }
895 /// assert_eq!(*map.get(&1).unwrap(), "a");
896 /// assert_eq!(*map.get(&2).unwrap(), "last");
897 /// ```
898 #[stable(feature = "map_first_last", since = "1.66.0")]
899 pub fn last_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
900 where
901 K: Ord,
902 {
903 let (map, dormant_map) = DormantMutRef::new(self);
904 let root_node = map.root.as_mut()?.borrow_mut();
905 let kv = root_node.last_leaf_edge().left_kv().ok()?;
906 Some(OccupiedEntry {
907 handle: kv.forget_node_type(),
908 dormant_map,
909 alloc: (*map.alloc).clone(),
910 _marker: PhantomData,
911 })
912 }
913
914 /// Removes and returns the last element in the map.
915 /// The key of this element is the maximum key that was in the map.
916 ///
917 /// # Examples
918 ///
919 /// Draining elements in descending order, while keeping a usable map each iteration.
920 ///
921 /// ```
922 /// use std::collections::BTreeMap;
923 ///
924 /// let mut map = BTreeMap::new();
925 /// map.insert(1, "a");
926 /// map.insert(2, "b");
927 /// while let Some((key, _val)) = map.pop_last() {
928 /// assert!(map.iter().all(|(k, _v)| *k < key));
929 /// }
930 /// assert!(map.is_empty());
931 /// ```
932 #[stable(feature = "map_first_last", since = "1.66.0")]
933 pub fn pop_last(&mut self) -> Option<(K, V)>
934 where
935 K: Ord,
936 {
937 self.last_entry().map(|entry| entry.remove_entry())
938 }
939
940 /// Returns `true` if the map contains a value for the specified key.
941 ///
942 /// The key may be any borrowed form of the map's key type, but the ordering
943 /// on the borrowed form *must* match the ordering on the key type.
944 ///
945 /// # Examples
946 ///
947 /// ```
948 /// use std::collections::BTreeMap;
949 ///
950 /// let mut map = BTreeMap::new();
951 /// map.insert(1, "a");
952 /// assert_eq!(map.contains_key(&1), true);
953 /// assert_eq!(map.contains_key(&2), false);
954 /// ```
955 #[stable(feature = "rust1", since = "1.0.0")]
956 #[cfg_attr(not(test), rustc_diagnostic_item = "btreemap_contains_key")]
957 pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool
958 where
959 K: Borrow<Q> + Ord,
960 Q: Ord,
961 {
962 self.get(key).is_some()
963 }
964
965 /// Returns a mutable reference to the value corresponding to the key.
966 ///
967 /// The key may be any borrowed form of the map's key type, but the ordering
968 /// on the borrowed form *must* match the ordering on the key type.
969 ///
970 /// # Examples
971 ///
972 /// ```
973 /// use std::collections::BTreeMap;
974 ///
975 /// let mut map = BTreeMap::new();
976 /// map.insert(1, "a");
977 /// if let Some(x) = map.get_mut(&1) {
978 /// *x = "b";
979 /// }
980 /// assert_eq!(map[&1], "b");
981 /// ```
982 // See `get` for implementation notes, this is basically a copy-paste with mut's added
983 #[stable(feature = "rust1", since = "1.0.0")]
984 pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
985 where
986 K: Borrow<Q> + Ord,
987 Q: Ord,
988 {
989 let root_node = self.root.as_mut()?.borrow_mut();
990 match root_node.search_tree(key) {
991 Found(handle) => Some(handle.into_val_mut()),
992 GoDown(_) => None,
993 }
994 }
995
996 /// Inserts a key-value pair into the map.
997 ///
998 /// If the map did not have this key present, `None` is returned.
999 ///
1000 /// If the map did have this key present, the value is updated, and the old
1001 /// value is returned. The key is not updated, though; this matters for
1002 /// types that can be `==` without being identical. See the [module-level
1003 /// documentation] for more.
1004 ///
1005 /// [module-level documentation]: index.html#insert-and-complex-keys
1006 ///
1007 /// # Examples
1008 ///
1009 /// ```
1010 /// use std::collections::BTreeMap;
1011 ///
1012 /// let mut map = BTreeMap::new();
1013 /// assert_eq!(map.insert(37, "a"), None);
1014 /// assert_eq!(map.is_empty(), false);
1015 ///
1016 /// map.insert(37, "b");
1017 /// assert_eq!(map.insert(37, "c"), Some("b"));
1018 /// assert_eq!(map[&37], "c");
1019 /// ```
1020 #[stable(feature = "rust1", since = "1.0.0")]
1021 #[rustc_confusables("push", "put", "set")]
1022 #[cfg_attr(not(test), rustc_diagnostic_item = "btreemap_insert")]
1023 pub fn insert(&mut self, key: K, value: V) -> Option<V>
1024 where
1025 K: Ord,
1026 {
1027 match self.entry(key) {
1028 Occupied(mut entry) => Some(entry.insert(value)),
1029 Vacant(entry) => {
1030 entry.insert(value);
1031 None
1032 }
1033 }
1034 }
1035
1036 /// Tries to insert a key-value pair into the map, and returns
1037 /// a mutable reference to the value in the entry.
1038 ///
1039 /// If the map already had this key present, nothing is updated, and
1040 /// an error containing the occupied entry and the value is returned.
1041 ///
1042 /// # Examples
1043 ///
1044 /// ```
1045 /// #![feature(map_try_insert)]
1046 ///
1047 /// use std::collections::BTreeMap;
1048 ///
1049 /// let mut map = BTreeMap::new();
1050 /// assert_eq!(map.try_insert(37, "a").unwrap(), &"a");
1051 ///
1052 /// let err = map.try_insert(37, "b").unwrap_err();
1053 /// assert_eq!(err.entry.key(), &37);
1054 /// assert_eq!(err.entry.get(), &"a");
1055 /// assert_eq!(err.value, "b");
1056 /// ```
1057 #[unstable(feature = "map_try_insert", issue = "82766")]
1058 pub fn try_insert(&mut self, key: K, value: V) -> Result<&mut V, OccupiedError<'_, K, V, A>>
1059 where
1060 K: Ord,
1061 {
1062 match self.entry(key) {
1063 Occupied(entry) => Err(OccupiedError { entry, value }),
1064 Vacant(entry) => Ok(entry.insert(value)),
1065 }
1066 }
1067
1068 /// Removes a key from the map, returning the value at the key if the key
1069 /// was previously in the map.
1070 ///
1071 /// The key may be any borrowed form of the map's key type, but the ordering
1072 /// on the borrowed form *must* match the ordering on the key type.
1073 ///
1074 /// # Examples
1075 ///
1076 /// ```
1077 /// use std::collections::BTreeMap;
1078 ///
1079 /// let mut map = BTreeMap::new();
1080 /// map.insert(1, "a");
1081 /// assert_eq!(map.remove(&1), Some("a"));
1082 /// assert_eq!(map.remove(&1), None);
1083 /// ```
1084 #[stable(feature = "rust1", since = "1.0.0")]
1085 #[rustc_confusables("delete", "take")]
1086 pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
1087 where
1088 K: Borrow<Q> + Ord,
1089 Q: Ord,
1090 {
1091 self.remove_entry(key).map(|(_, v)| v)
1092 }
1093
1094 /// Removes a key from the map, returning the stored key and value if the key
1095 /// was previously in the map.
1096 ///
1097 /// The key may be any borrowed form of the map's key type, but the ordering
1098 /// on the borrowed form *must* match the ordering on the key type.
1099 ///
1100 /// # Examples
1101 ///
1102 /// ```
1103 /// use std::collections::BTreeMap;
1104 ///
1105 /// let mut map = BTreeMap::new();
1106 /// map.insert(1, "a");
1107 /// assert_eq!(map.remove_entry(&1), Some((1, "a")));
1108 /// assert_eq!(map.remove_entry(&1), None);
1109 /// ```
1110 #[stable(feature = "btreemap_remove_entry", since = "1.45.0")]
1111 pub fn remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)>
1112 where
1113 K: Borrow<Q> + Ord,
1114 Q: Ord,
1115 {
1116 let (map, dormant_map) = DormantMutRef::new(self);
1117 let root_node = map.root.as_mut()?.borrow_mut();
1118 match root_node.search_tree(key) {
1119 Found(handle) => Some(
1120 OccupiedEntry {
1121 handle,
1122 dormant_map,
1123 alloc: (*map.alloc).clone(),
1124 _marker: PhantomData,
1125 }
1126 .remove_entry(),
1127 ),
1128 GoDown(_) => None,
1129 }
1130 }
1131
1132 /// Retains only the elements specified by the predicate.
1133 ///
1134 /// In other words, remove all pairs `(k, v)` for which `f(&k, &mut v)` returns `false`.
1135 /// The elements are visited in ascending key order.
1136 ///
1137 /// # Examples
1138 ///
1139 /// ```
1140 /// use std::collections::BTreeMap;
1141 ///
1142 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
1143 /// // Keep only the elements with even-numbered keys.
1144 /// map.retain(|&k, _| k % 2 == 0);
1145 /// assert!(map.into_iter().eq(vec![(0, 0), (2, 20), (4, 40), (6, 60)]));
1146 /// ```
1147 #[inline]
1148 #[stable(feature = "btree_retain", since = "1.53.0")]
1149 pub fn retain<F>(&mut self, mut f: F)
1150 where
1151 K: Ord,
1152 F: FnMut(&K, &mut V) -> bool,
1153 {
1154 self.extract_if(|k, v| !f(k, v)).for_each(drop);
1155 }
1156
1157 /// Moves all elements from `other` into `self`, leaving `other` empty.
1158 ///
1159 /// If a key from `other` is already present in `self`, the respective
1160 /// value from `self` will be overwritten with the respective value from `other`.
1161 ///
1162 /// # Examples
1163 ///
1164 /// ```
1165 /// use std::collections::BTreeMap;
1166 ///
1167 /// let mut a = BTreeMap::new();
1168 /// a.insert(1, "a");
1169 /// a.insert(2, "b");
1170 /// a.insert(3, "c"); // Note: Key (3) also present in b.
1171 ///
1172 /// let mut b = BTreeMap::new();
1173 /// b.insert(3, "d"); // Note: Key (3) also present in a.
1174 /// b.insert(4, "e");
1175 /// b.insert(5, "f");
1176 ///
1177 /// a.append(&mut b);
1178 ///
1179 /// assert_eq!(a.len(), 5);
1180 /// assert_eq!(b.len(), 0);
1181 ///
1182 /// assert_eq!(a[&1], "a");
1183 /// assert_eq!(a[&2], "b");
1184 /// assert_eq!(a[&3], "d"); // Note: "c" has been overwritten.
1185 /// assert_eq!(a[&4], "e");
1186 /// assert_eq!(a[&5], "f");
1187 /// ```
1188 #[stable(feature = "btree_append", since = "1.11.0")]
1189 pub fn append(&mut self, other: &mut Self)
1190 where
1191 K: Ord,
1192 A: Clone,
1193 {
1194 // Do we have to append anything at all?
1195 if other.is_empty() {
1196 return;
1197 }
1198
1199 // We can just swap `self` and `other` if `self` is empty.
1200 if self.is_empty() {
1201 mem::swap(self, other);
1202 return;
1203 }
1204
1205 let self_iter = mem::replace(self, Self::new_in((*self.alloc).clone())).into_iter();
1206 let other_iter = mem::replace(other, Self::new_in((*self.alloc).clone())).into_iter();
1207 let root = self.root.get_or_insert_with(|| Root::new((*self.alloc).clone()));
1208 root.append_from_sorted_iters(
1209 self_iter,
1210 other_iter,
1211 &mut self.length,
1212 (*self.alloc).clone(),
1213 )
1214 }
1215
1216 /// Constructs a double-ended iterator over a sub-range of elements in the map.
1217 /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
1218 /// yield elements from min (inclusive) to max (exclusive).
1219 /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
1220 /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
1221 /// range from 4 to 10.
1222 ///
1223 /// # Panics
1224 ///
1225 /// Panics if range `start > end`.
1226 /// Panics if range `start == end` and both bounds are `Excluded`.
1227 ///
1228 /// # Examples
1229 ///
1230 /// ```
1231 /// use std::collections::BTreeMap;
1232 /// use std::ops::Bound::Included;
1233 ///
1234 /// let mut map = BTreeMap::new();
1235 /// map.insert(3, "a");
1236 /// map.insert(5, "b");
1237 /// map.insert(8, "c");
1238 /// for (&key, &value) in map.range((Included(&4), Included(&8))) {
1239 /// println!("{key}: {value}");
1240 /// }
1241 /// assert_eq!(Some((&5, &"b")), map.range(4..).next());
1242 /// ```
1243 #[stable(feature = "btree_range", since = "1.17.0")]
1244 pub fn range<T: ?Sized, R>(&self, range: R) -> Range<'_, K, V>
1245 where
1246 T: Ord,
1247 K: Borrow<T> + Ord,
1248 R: RangeBounds<T>,
1249 {
1250 if let Some(root) = &self.root {
1251 Range { inner: root.reborrow().range_search(range) }
1252 } else {
1253 Range { inner: LeafRange::none() }
1254 }
1255 }
1256
1257 /// Constructs a mutable double-ended iterator over a sub-range of elements in the map.
1258 /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
1259 /// yield elements from min (inclusive) to max (exclusive).
1260 /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
1261 /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
1262 /// range from 4 to 10.
1263 ///
1264 /// # Panics
1265 ///
1266 /// Panics if range `start > end`.
1267 /// Panics if range `start == end` and both bounds are `Excluded`.
1268 ///
1269 /// # Examples
1270 ///
1271 /// ```
1272 /// use std::collections::BTreeMap;
1273 ///
1274 /// let mut map: BTreeMap<&str, i32> =
1275 /// [("Alice", 0), ("Bob", 0), ("Carol", 0), ("Cheryl", 0)].into();
1276 /// for (_, balance) in map.range_mut("B".."Cheryl") {
1277 /// *balance += 100;
1278 /// }
1279 /// for (name, balance) in &map {
1280 /// println!("{name} => {balance}");
1281 /// }
1282 /// ```
1283 #[stable(feature = "btree_range", since = "1.17.0")]
1284 pub fn range_mut<T: ?Sized, R>(&mut self, range: R) -> RangeMut<'_, K, V>
1285 where
1286 T: Ord,
1287 K: Borrow<T> + Ord,
1288 R: RangeBounds<T>,
1289 {
1290 if let Some(root) = &mut self.root {
1291 RangeMut { inner: root.borrow_valmut().range_search(range), _marker: PhantomData }
1292 } else {
1293 RangeMut { inner: LeafRange::none(), _marker: PhantomData }
1294 }
1295 }
1296
1297 /// Gets the given key's corresponding entry in the map for in-place manipulation.
1298 ///
1299 /// # Examples
1300 ///
1301 /// ```
1302 /// use std::collections::BTreeMap;
1303 ///
1304 /// let mut count: BTreeMap<&str, usize> = BTreeMap::new();
1305 ///
1306 /// // count the number of occurrences of letters in the vec
1307 /// for x in ["a", "b", "a", "c", "a", "b"] {
1308 /// count.entry(x).and_modify(|curr| *curr += 1).or_insert(1);
1309 /// }
1310 ///
1311 /// assert_eq!(count["a"], 3);
1312 /// assert_eq!(count["b"], 2);
1313 /// assert_eq!(count["c"], 1);
1314 /// ```
1315 #[stable(feature = "rust1", since = "1.0.0")]
1316 pub fn entry(&mut self, key: K) -> Entry<'_, K, V, A>
1317 where
1318 K: Ord,
1319 {
1320 let (map, dormant_map) = DormantMutRef::new(self);
1321 match map.root {
1322 None => Vacant(VacantEntry {
1323 key,
1324 handle: None,
1325 dormant_map,
1326 alloc: (*map.alloc).clone(),
1327 _marker: PhantomData,
1328 }),
1329 Some(ref mut root) => match root.borrow_mut().search_tree(&key) {
1330 Found(handle) => Occupied(OccupiedEntry {
1331 handle,
1332 dormant_map,
1333 alloc: (*map.alloc).clone(),
1334 _marker: PhantomData,
1335 }),
1336 GoDown(handle) => Vacant(VacantEntry {
1337 key,
1338 handle: Some(handle),
1339 dormant_map,
1340 alloc: (*map.alloc).clone(),
1341 _marker: PhantomData,
1342 }),
1343 },
1344 }
1345 }
1346
1347 /// Splits the collection into two at the given key. Returns everything after the given key,
1348 /// including the key.
1349 ///
1350 /// # Examples
1351 ///
1352 /// ```
1353 /// use std::collections::BTreeMap;
1354 ///
1355 /// let mut a = BTreeMap::new();
1356 /// a.insert(1, "a");
1357 /// a.insert(2, "b");
1358 /// a.insert(3, "c");
1359 /// a.insert(17, "d");
1360 /// a.insert(41, "e");
1361 ///
1362 /// let b = a.split_off(&3);
1363 ///
1364 /// assert_eq!(a.len(), 2);
1365 /// assert_eq!(b.len(), 3);
1366 ///
1367 /// assert_eq!(a[&1], "a");
1368 /// assert_eq!(a[&2], "b");
1369 ///
1370 /// assert_eq!(b[&3], "c");
1371 /// assert_eq!(b[&17], "d");
1372 /// assert_eq!(b[&41], "e");
1373 /// ```
1374 #[stable(feature = "btree_split_off", since = "1.11.0")]
1375 pub fn split_off<Q: ?Sized + Ord>(&mut self, key: &Q) -> Self
1376 where
1377 K: Borrow<Q> + Ord,
1378 A: Clone,
1379 {
1380 if self.is_empty() {
1381 return Self::new_in((*self.alloc).clone());
1382 }
1383
1384 let total_num = self.len();
1385 let left_root = self.root.as_mut().unwrap(); // unwrap succeeds because not empty
1386
1387 let right_root = left_root.split_off(key, (*self.alloc).clone());
1388
1389 let (new_left_len, right_len) = Root::calc_split_length(total_num, &left_root, &right_root);
1390 self.length = new_left_len;
1391
1392 BTreeMap {
1393 root: Some(right_root),
1394 length: right_len,
1395 alloc: self.alloc.clone(),
1396 _marker: PhantomData,
1397 }
1398 }
1399
1400 /// Creates an iterator that visits all elements (key-value pairs) in
1401 /// ascending key order and uses a closure to determine if an element should
1402 /// be removed. If the closure returns `true`, the element is removed from
1403 /// the map and yielded. If the closure returns `false`, or panics, the
1404 /// element remains in the map and will not be yielded.
1405 ///
1406 /// The iterator also lets you mutate the value of each element in the
1407 /// closure, regardless of whether you choose to keep or remove it.
1408 ///
1409 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
1410 /// or the iteration short-circuits, then the remaining elements will be retained.
1411 /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
1412 ///
1413 /// [`retain`]: BTreeMap::retain
1414 ///
1415 /// # Examples
1416 ///
1417 /// Splitting a map into even and odd keys, reusing the original map:
1418 ///
1419 /// ```
1420 /// #![feature(btree_extract_if)]
1421 /// use std::collections::BTreeMap;
1422 ///
1423 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
1424 /// let evens: BTreeMap<_, _> = map.extract_if(|k, _v| k % 2 == 0).collect();
1425 /// let odds = map;
1426 /// assert_eq!(evens.keys().copied().collect::<Vec<_>>(), [0, 2, 4, 6]);
1427 /// assert_eq!(odds.keys().copied().collect::<Vec<_>>(), [1, 3, 5, 7]);
1428 /// ```
1429 #[unstable(feature = "btree_extract_if", issue = "70530")]
1430 pub fn extract_if<F>(&mut self, pred: F) -> ExtractIf<'_, K, V, F, A>
1431 where
1432 K: Ord,
1433 F: FnMut(&K, &mut V) -> bool,
1434 {
1435 let (inner, alloc) = self.extract_if_inner();
1436 ExtractIf { pred, inner, alloc }
1437 }
1438
1439 pub(super) fn extract_if_inner(&mut self) -> (ExtractIfInner<'_, K, V>, A)
1440 where
1441 K: Ord,
1442 {
1443 if let Some(root) = self.root.as_mut() {
1444 let (root, dormant_root) = DormantMutRef::new(root);
1445 let front = root.borrow_mut().first_leaf_edge();
1446 (
1447 ExtractIfInner {
1448 length: &mut self.length,
1449 dormant_root: Some(dormant_root),
1450 cur_leaf_edge: Some(front),
1451 },
1452 (*self.alloc).clone(),
1453 )
1454 } else {
1455 (
1456 ExtractIfInner {
1457 length: &mut self.length,
1458 dormant_root: None,
1459 cur_leaf_edge: None,
1460 },
1461 (*self.alloc).clone(),
1462 )
1463 }
1464 }
1465
1466 /// Creates a consuming iterator visiting all the keys, in sorted order.
1467 /// The map cannot be used after calling this.
1468 /// The iterator element type is `K`.
1469 ///
1470 /// # Examples
1471 ///
1472 /// ```
1473 /// use std::collections::BTreeMap;
1474 ///
1475 /// let mut a = BTreeMap::new();
1476 /// a.insert(2, "b");
1477 /// a.insert(1, "a");
1478 ///
1479 /// let keys: Vec<i32> = a.into_keys().collect();
1480 /// assert_eq!(keys, [1, 2]);
1481 /// ```
1482 #[inline]
1483 #[stable(feature = "map_into_keys_values", since = "1.54.0")]
1484 pub fn into_keys(self) -> IntoKeys<K, V, A> {
1485 IntoKeys { inner: self.into_iter() }
1486 }
1487
1488 /// Creates a consuming iterator visiting all the values, in order by key.
1489 /// The map cannot be used after calling this.
1490 /// The iterator element type is `V`.
1491 ///
1492 /// # Examples
1493 ///
1494 /// ```
1495 /// use std::collections::BTreeMap;
1496 ///
1497 /// let mut a = BTreeMap::new();
1498 /// a.insert(1, "hello");
1499 /// a.insert(2, "goodbye");
1500 ///
1501 /// let values: Vec<&str> = a.into_values().collect();
1502 /// assert_eq!(values, ["hello", "goodbye"]);
1503 /// ```
1504 #[inline]
1505 #[stable(feature = "map_into_keys_values", since = "1.54.0")]
1506 pub fn into_values(self) -> IntoValues<K, V, A> {
1507 IntoValues { inner: self.into_iter() }
1508 }
1509
1510 /// Makes a `BTreeMap` from a sorted iterator.
1511 pub(crate) fn bulk_build_from_sorted_iter<I>(iter: I, alloc: A) -> Self
1512 where
1513 K: Ord,
1514 I: IntoIterator<Item = (K, V)>,
1515 {
1516 let mut root = Root::new(alloc.clone());
1517 let mut length = 0;
1518 root.bulk_push(DedupSortedIter::new(iter.into_iter()), &mut length, alloc.clone());
1519 BTreeMap { root: Some(root), length, alloc: ManuallyDrop::new(alloc), _marker: PhantomData }
1520 }
1521}
1522
1523#[stable(feature = "rust1", since = "1.0.0")]
1524impl<'a, K, V, A: Allocator + Clone> IntoIterator for &'a BTreeMap<K, V, A> {
1525 type Item = (&'a K, &'a V);
1526 type IntoIter = Iter<'a, K, V>;
1527
1528 fn into_iter(self) -> Iter<'a, K, V> {
1529 self.iter()
1530 }
1531}
1532
1533#[stable(feature = "rust1", since = "1.0.0")]
1534impl<'a, K: 'a, V: 'a> Iterator for Iter<'a, K, V> {
1535 type Item = (&'a K, &'a V);
1536
1537 fn next(&mut self) -> Option<(&'a K, &'a V)> {
1538 if self.length == 0 {
1539 None
1540 } else {
1541 self.length -= 1;
1542 Some(unsafe { self.range.next_unchecked() })
1543 }
1544 }
1545
1546 fn size_hint(&self) -> (usize, Option<usize>) {
1547 (self.length, Some(self.length))
1548 }
1549
1550 fn last(mut self) -> Option<(&'a K, &'a V)> {
1551 self.next_back()
1552 }
1553
1554 fn min(mut self) -> Option<(&'a K, &'a V)>
1555 where
1556 (&'a K, &'a V): Ord,
1557 {
1558 self.next()
1559 }
1560
1561 fn max(mut self) -> Option<(&'a K, &'a V)>
1562 where
1563 (&'a K, &'a V): Ord,
1564 {
1565 self.next_back()
1566 }
1567}
1568
1569#[stable(feature = "fused", since = "1.26.0")]
1570impl<K, V> FusedIterator for Iter<'_, K, V> {}
1571
1572#[stable(feature = "rust1", since = "1.0.0")]
1573impl<'a, K: 'a, V: 'a> DoubleEndedIterator for Iter<'a, K, V> {
1574 fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
1575 if self.length == 0 {
1576 None
1577 } else {
1578 self.length -= 1;
1579 Some(unsafe { self.range.next_back_unchecked() })
1580 }
1581 }
1582}
1583
1584#[stable(feature = "rust1", since = "1.0.0")]
1585impl<K, V> ExactSizeIterator for Iter<'_, K, V> {
1586 fn len(&self) -> usize {
1587 self.length
1588 }
1589}
1590
1591#[stable(feature = "rust1", since = "1.0.0")]
1592impl<K, V> Clone for Iter<'_, K, V> {
1593 fn clone(&self) -> Self {
1594 Iter { range: self.range.clone(), length: self.length }
1595 }
1596}
1597
1598#[stable(feature = "rust1", since = "1.0.0")]
1599impl<'a, K, V, A: Allocator + Clone> IntoIterator for &'a mut BTreeMap<K, V, A> {
1600 type Item = (&'a K, &'a mut V);
1601 type IntoIter = IterMut<'a, K, V>;
1602
1603 fn into_iter(self) -> IterMut<'a, K, V> {
1604 self.iter_mut()
1605 }
1606}
1607
1608#[stable(feature = "rust1", since = "1.0.0")]
1609impl<'a, K, V> Iterator for IterMut<'a, K, V> {
1610 type Item = (&'a K, &'a mut V);
1611
1612 fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
1613 if self.length == 0 {
1614 None
1615 } else {
1616 self.length -= 1;
1617 Some(unsafe { self.range.next_unchecked() })
1618 }
1619 }
1620
1621 fn size_hint(&self) -> (usize, Option<usize>) {
1622 (self.length, Some(self.length))
1623 }
1624
1625 fn last(mut self) -> Option<(&'a K, &'a mut V)> {
1626 self.next_back()
1627 }
1628
1629 fn min(mut self) -> Option<(&'a K, &'a mut V)>
1630 where
1631 (&'a K, &'a mut V): Ord,
1632 {
1633 self.next()
1634 }
1635
1636 fn max(mut self) -> Option<(&'a K, &'a mut V)>
1637 where
1638 (&'a K, &'a mut V): Ord,
1639 {
1640 self.next_back()
1641 }
1642}
1643
1644#[stable(feature = "rust1", since = "1.0.0")]
1645impl<'a, K, V> DoubleEndedIterator for IterMut<'a, K, V> {
1646 fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
1647 if self.length == 0 {
1648 None
1649 } else {
1650 self.length -= 1;
1651 Some(unsafe { self.range.next_back_unchecked() })
1652 }
1653 }
1654}
1655
1656#[stable(feature = "rust1", since = "1.0.0")]
1657impl<K, V> ExactSizeIterator for IterMut<'_, K, V> {
1658 fn len(&self) -> usize {
1659 self.length
1660 }
1661}
1662
1663#[stable(feature = "fused", since = "1.26.0")]
1664impl<K, V> FusedIterator for IterMut<'_, K, V> {}
1665
1666impl<'a, K, V> IterMut<'a, K, V> {
1667 /// Returns an iterator of references over the remaining items.
1668 #[inline]
1669 pub(super) fn iter(&self) -> Iter<'_, K, V> {
1670 Iter { range: self.range.reborrow(), length: self.length }
1671 }
1672}
1673
1674#[stable(feature = "rust1", since = "1.0.0")]
1675impl<K, V, A: Allocator + Clone> IntoIterator for BTreeMap<K, V, A> {
1676 type Item = (K, V);
1677 type IntoIter = IntoIter<K, V, A>;
1678
1679 /// Gets an owning iterator over the entries of the map, sorted by key.
1680 fn into_iter(self) -> IntoIter<K, V, A> {
1681 let mut me = ManuallyDrop::new(self);
1682 if let Some(root) = me.root.take() {
1683 let full_range = root.into_dying().full_range();
1684
1685 IntoIter {
1686 range: full_range,
1687 length: me.length,
1688 alloc: unsafe { ManuallyDrop::take(&mut me.alloc) },
1689 }
1690 } else {
1691 IntoIter {
1692 range: LazyLeafRange::none(),
1693 length: 0,
1694 alloc: unsafe { ManuallyDrop::take(&mut me.alloc) },
1695 }
1696 }
1697 }
1698}
1699
1700#[stable(feature = "btree_drop", since = "1.7.0")]
1701impl<K, V, A: Allocator + Clone> Drop for IntoIter<K, V, A> {
1702 fn drop(&mut self) {
1703 struct DropGuard<'a, K, V, A: Allocator + Clone>(&'a mut IntoIter<K, V, A>);
1704
1705 impl<'a, K, V, A: Allocator + Clone> Drop for DropGuard<'a, K, V, A> {
1706 fn drop(&mut self) {
1707 // Continue the same loop we perform below. This only runs when unwinding, so we
1708 // don't have to care about panics this time (they'll abort).
1709 while let Some(kv) = self.0.dying_next() {
1710 // SAFETY: we consume the dying handle immediately.
1711 unsafe { kv.drop_key_val() };
1712 }
1713 }
1714 }
1715
1716 while let Some(kv) = self.dying_next() {
1717 let guard = DropGuard(self);
1718 // SAFETY: we don't touch the tree before consuming the dying handle.
1719 unsafe { kv.drop_key_val() };
1720 mem::forget(guard);
1721 }
1722 }
1723}
1724
1725impl<K, V, A: Allocator + Clone> IntoIter<K, V, A> {
1726 /// Core of a `next` method returning a dying KV handle,
1727 /// invalidated by further calls to this function and some others.
1728 fn dying_next(
1729 &mut self,
1730 ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>> {
1731 if self.length == 0 {
1732 self.range.deallocating_end(self.alloc.clone());
1733 None
1734 } else {
1735 self.length -= 1;
1736 Some(unsafe { self.range.deallocating_next_unchecked(self.alloc.clone()) })
1737 }
1738 }
1739
1740 /// Core of a `next_back` method returning a dying KV handle,
1741 /// invalidated by further calls to this function and some others.
1742 fn dying_next_back(
1743 &mut self,
1744 ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>> {
1745 if self.length == 0 {
1746 self.range.deallocating_end(self.alloc.clone());
1747 None
1748 } else {
1749 self.length -= 1;
1750 Some(unsafe { self.range.deallocating_next_back_unchecked(self.alloc.clone()) })
1751 }
1752 }
1753}
1754
1755#[stable(feature = "rust1", since = "1.0.0")]
1756impl<K, V, A: Allocator + Clone> Iterator for IntoIter<K, V, A> {
1757 type Item = (K, V);
1758
1759 fn next(&mut self) -> Option<(K, V)> {
1760 // SAFETY: we consume the dying handle immediately.
1761 self.dying_next().map(unsafe { |kv| kv.into_key_val() })
1762 }
1763
1764 fn size_hint(&self) -> (usize, Option<usize>) {
1765 (self.length, Some(self.length))
1766 }
1767}
1768
1769#[stable(feature = "rust1", since = "1.0.0")]
1770impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoIter<K, V, A> {
1771 fn next_back(&mut self) -> Option<(K, V)> {
1772 // SAFETY: we consume the dying handle immediately.
1773 self.dying_next_back().map(unsafe { |kv| kv.into_key_val() })
1774 }
1775}
1776
1777#[stable(feature = "rust1", since = "1.0.0")]
1778impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoIter<K, V, A> {
1779 fn len(&self) -> usize {
1780 self.length
1781 }
1782}
1783
1784#[stable(feature = "fused", since = "1.26.0")]
1785impl<K, V, A: Allocator + Clone> FusedIterator for IntoIter<K, V, A> {}
1786
1787#[stable(feature = "rust1", since = "1.0.0")]
1788impl<'a, K, V> Iterator for Keys<'a, K, V> {
1789 type Item = &'a K;
1790
1791 fn next(&mut self) -> Option<&'a K> {
1792 self.inner.next().map(|(k, _)| k)
1793 }
1794
1795 fn size_hint(&self) -> (usize, Option<usize>) {
1796 self.inner.size_hint()
1797 }
1798
1799 fn last(mut self) -> Option<&'a K> {
1800 self.next_back()
1801 }
1802
1803 fn min(mut self) -> Option<&'a K>
1804 where
1805 &'a K: Ord,
1806 {
1807 self.next()
1808 }
1809
1810 fn max(mut self) -> Option<&'a K>
1811 where
1812 &'a K: Ord,
1813 {
1814 self.next_back()
1815 }
1816}
1817
1818#[stable(feature = "rust1", since = "1.0.0")]
1819impl<'a, K, V> DoubleEndedIterator for Keys<'a, K, V> {
1820 fn next_back(&mut self) -> Option<&'a K> {
1821 self.inner.next_back().map(|(k, _)| k)
1822 }
1823}
1824
1825#[stable(feature = "rust1", since = "1.0.0")]
1826impl<K, V> ExactSizeIterator for Keys<'_, K, V> {
1827 fn len(&self) -> usize {
1828 self.inner.len()
1829 }
1830}
1831
1832#[stable(feature = "fused", since = "1.26.0")]
1833impl<K, V> FusedIterator for Keys<'_, K, V> {}
1834
1835#[stable(feature = "rust1", since = "1.0.0")]
1836impl<K, V> Clone for Keys<'_, K, V> {
1837 fn clone(&self) -> Self {
1838 Keys { inner: self.inner.clone() }
1839 }
1840}
1841
1842#[stable(feature = "default_iters", since = "1.70.0")]
1843impl<K, V> Default for Keys<'_, K, V> {
1844 /// Creates an empty `btree_map::Keys`.
1845 ///
1846 /// ```
1847 /// # use std::collections::btree_map;
1848 /// let iter: btree_map::Keys<'_, u8, u8> = Default::default();
1849 /// assert_eq!(iter.len(), 0);
1850 /// ```
1851 fn default() -> Self {
1852 Keys { inner: Default::default() }
1853 }
1854}
1855
1856#[stable(feature = "rust1", since = "1.0.0")]
1857impl<'a, K, V> Iterator for Values<'a, K, V> {
1858 type Item = &'a V;
1859
1860 fn next(&mut self) -> Option<&'a V> {
1861 self.inner.next().map(|(_, v)| v)
1862 }
1863
1864 fn size_hint(&self) -> (usize, Option<usize>) {
1865 self.inner.size_hint()
1866 }
1867
1868 fn last(mut self) -> Option<&'a V> {
1869 self.next_back()
1870 }
1871}
1872
1873#[stable(feature = "rust1", since = "1.0.0")]
1874impl<'a, K, V> DoubleEndedIterator for Values<'a, K, V> {
1875 fn next_back(&mut self) -> Option<&'a V> {
1876 self.inner.next_back().map(|(_, v)| v)
1877 }
1878}
1879
1880#[stable(feature = "rust1", since = "1.0.0")]
1881impl<K, V> ExactSizeIterator for Values<'_, K, V> {
1882 fn len(&self) -> usize {
1883 self.inner.len()
1884 }
1885}
1886
1887#[stable(feature = "fused", since = "1.26.0")]
1888impl<K, V> FusedIterator for Values<'_, K, V> {}
1889
1890#[stable(feature = "rust1", since = "1.0.0")]
1891impl<K, V> Clone for Values<'_, K, V> {
1892 fn clone(&self) -> Self {
1893 Values { inner: self.inner.clone() }
1894 }
1895}
1896
1897#[stable(feature = "default_iters", since = "1.70.0")]
1898impl<K, V> Default for Values<'_, K, V> {
1899 /// Creates an empty `btree_map::Values`.
1900 ///
1901 /// ```
1902 /// # use std::collections::btree_map;
1903 /// let iter: btree_map::Values<'_, u8, u8> = Default::default();
1904 /// assert_eq!(iter.len(), 0);
1905 /// ```
1906 fn default() -> Self {
1907 Values { inner: Default::default() }
1908 }
1909}
1910
1911/// An iterator produced by calling `extract_if` on BTreeMap.
1912#[unstable(feature = "btree_extract_if", issue = "70530")]
1913#[must_use = "iterators are lazy and do nothing unless consumed"]
1914pub struct ExtractIf<
1915 'a,
1916 K,
1917 V,
1918 F,
1919 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
1920> {
1921 pred: F,
1922 inner: ExtractIfInner<'a, K, V>,
1923 /// The BTreeMap will outlive this IntoIter so we don't care about drop order for `alloc`.
1924 alloc: A,
1925}
1926
1927/// Most of the implementation of ExtractIf are generic over the type
1928/// of the predicate, thus also serving for BTreeSet::ExtractIf.
1929pub(super) struct ExtractIfInner<'a, K, V> {
1930 /// Reference to the length field in the borrowed map, updated live.
1931 length: &'a mut usize,
1932 /// Buried reference to the root field in the borrowed map.
1933 /// Wrapped in `Option` to allow drop handler to `take` it.
1934 dormant_root: Option<DormantMutRef<'a, Root<K, V>>>,
1935 /// Contains a leaf edge preceding the next element to be returned, or the last leaf edge.
1936 /// Empty if the map has no root, if iteration went beyond the last leaf edge,
1937 /// or if a panic occurred in the predicate.
1938 cur_leaf_edge: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
1939}
1940
1941#[unstable(feature = "btree_extract_if", issue = "70530")]
1942impl<K, V, F, A> fmt::Debug for ExtractIf<'_, K, V, F, A>
1943where
1944 K: fmt::Debug,
1945 V: fmt::Debug,
1946 A: Allocator + Clone,
1947{
1948 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1949 f.debug_struct("ExtractIf").field("peek", &self.inner.peek()).finish_non_exhaustive()
1950 }
1951}
1952
1953#[unstable(feature = "btree_extract_if", issue = "70530")]
1954impl<K, V, F, A: Allocator + Clone> Iterator for ExtractIf<'_, K, V, F, A>
1955where
1956 F: FnMut(&K, &mut V) -> bool,
1957{
1958 type Item = (K, V);
1959
1960 fn next(&mut self) -> Option<(K, V)> {
1961 self.inner.next(&mut self.pred, self.alloc.clone())
1962 }
1963
1964 fn size_hint(&self) -> (usize, Option<usize>) {
1965 self.inner.size_hint()
1966 }
1967}
1968
1969impl<'a, K, V> ExtractIfInner<'a, K, V> {
1970 /// Allow Debug implementations to predict the next element.
1971 pub(super) fn peek(&self) -> Option<(&K, &V)> {
1972 let edge = self.cur_leaf_edge.as_ref()?;
1973 edge.reborrow().next_kv().ok().map(Handle::into_kv)
1974 }
1975
1976 /// Implementation of a typical `ExtractIf::next` method, given the predicate.
1977 pub(super) fn next<F, A: Allocator + Clone>(&mut self, pred: &mut F, alloc: A) -> Option<(K, V)>
1978 where
1979 F: FnMut(&K, &mut V) -> bool,
1980 {
1981 while let Ok(mut kv) = self.cur_leaf_edge.take()?.next_kv() {
1982 let (k, v) = kv.kv_mut();
1983 if pred(k, v) {
1984 *self.length -= 1;
1985 let (kv, pos) = kv.remove_kv_tracking(
1986 || {
1987 // SAFETY: we will touch the root in a way that will not
1988 // invalidate the position returned.
1989 let root = unsafe { self.dormant_root.take().unwrap().awaken() };
1990 root.pop_internal_level(alloc.clone());
1991 self.dormant_root = Some(DormantMutRef::new(root).1);
1992 },
1993 alloc.clone(),
1994 );
1995 self.cur_leaf_edge = Some(pos);
1996 return Some(kv);
1997 }
1998 self.cur_leaf_edge = Some(kv.next_leaf_edge());
1999 }
2000 None
2001 }
2002
2003 /// Implementation of a typical `ExtractIf::size_hint` method.
2004 pub(super) fn size_hint(&self) -> (usize, Option<usize>) {
2005 // In most of the btree iterators, `self.length` is the number of elements
2006 // yet to be visited. Here, it includes elements that were visited and that
2007 // the predicate decided not to drain. Making this upper bound more tight
2008 // during iteration would require an extra field.
2009 (0, Some(*self.length))
2010 }
2011}
2012
2013#[unstable(feature = "btree_extract_if", issue = "70530")]
2014impl<K, V, F> FusedIterator for ExtractIf<'_, K, V, F> where F: FnMut(&K, &mut V) -> bool {}
2015
2016#[stable(feature = "btree_range", since = "1.17.0")]
2017impl<'a, K, V> Iterator for Range<'a, K, V> {
2018 type Item = (&'a K, &'a V);
2019
2020 fn next(&mut self) -> Option<(&'a K, &'a V)> {
2021 self.inner.next_checked()
2022 }
2023
2024 fn last(mut self) -> Option<(&'a K, &'a V)> {
2025 self.next_back()
2026 }
2027
2028 fn min(mut self) -> Option<(&'a K, &'a V)>
2029 where
2030 (&'a K, &'a V): Ord,
2031 {
2032 self.next()
2033 }
2034
2035 fn max(mut self) -> Option<(&'a K, &'a V)>
2036 where
2037 (&'a K, &'a V): Ord,
2038 {
2039 self.next_back()
2040 }
2041}
2042
2043#[stable(feature = "default_iters", since = "1.70.0")]
2044impl<K, V> Default for Range<'_, K, V> {
2045 /// Creates an empty `btree_map::Range`.
2046 ///
2047 /// ```
2048 /// # use std::collections::btree_map;
2049 /// let iter: btree_map::Range<'_, u8, u8> = Default::default();
2050 /// assert_eq!(iter.count(), 0);
2051 /// ```
2052 fn default() -> Self {
2053 Range { inner: Default::default() }
2054 }
2055}
2056
2057#[stable(feature = "default_iters_sequel", since = "1.82.0")]
2058impl<K, V> Default for RangeMut<'_, K, V> {
2059 /// Creates an empty `btree_map::RangeMut`.
2060 ///
2061 /// ```
2062 /// # use std::collections::btree_map;
2063 /// let iter: btree_map::RangeMut<'_, u8, u8> = Default::default();
2064 /// assert_eq!(iter.count(), 0);
2065 /// ```
2066 fn default() -> Self {
2067 RangeMut { inner: Default::default(), _marker: PhantomData }
2068 }
2069}
2070
2071#[stable(feature = "map_values_mut", since = "1.10.0")]
2072impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
2073 type Item = &'a mut V;
2074
2075 fn next(&mut self) -> Option<&'a mut V> {
2076 self.inner.next().map(|(_, v)| v)
2077 }
2078
2079 fn size_hint(&self) -> (usize, Option<usize>) {
2080 self.inner.size_hint()
2081 }
2082
2083 fn last(mut self) -> Option<&'a mut V> {
2084 self.next_back()
2085 }
2086}
2087
2088#[stable(feature = "map_values_mut", since = "1.10.0")]
2089impl<'a, K, V> DoubleEndedIterator for ValuesMut<'a, K, V> {
2090 fn next_back(&mut self) -> Option<&'a mut V> {
2091 self.inner.next_back().map(|(_, v)| v)
2092 }
2093}
2094
2095#[stable(feature = "map_values_mut", since = "1.10.0")]
2096impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> {
2097 fn len(&self) -> usize {
2098 self.inner.len()
2099 }
2100}
2101
2102#[stable(feature = "fused", since = "1.26.0")]
2103impl<K, V> FusedIterator for ValuesMut<'_, K, V> {}
2104
2105#[stable(feature = "default_iters_sequel", since = "1.82.0")]
2106impl<K, V> Default for ValuesMut<'_, K, V> {
2107 /// Creates an empty `btree_map::ValuesMut`.
2108 ///
2109 /// ```
2110 /// # use std::collections::btree_map;
2111 /// let iter: btree_map::ValuesMut<'_, u8, u8> = Default::default();
2112 /// assert_eq!(iter.count(), 0);
2113 /// ```
2114 fn default() -> Self {
2115 ValuesMut { inner: Default::default() }
2116 }
2117}
2118
2119#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2120impl<K, V, A: Allocator + Clone> Iterator for IntoKeys<K, V, A> {
2121 type Item = K;
2122
2123 fn next(&mut self) -> Option<K> {
2124 self.inner.next().map(|(k, _)| k)
2125 }
2126
2127 fn size_hint(&self) -> (usize, Option<usize>) {
2128 self.inner.size_hint()
2129 }
2130
2131 fn last(mut self) -> Option<K> {
2132 self.next_back()
2133 }
2134
2135 fn min(mut self) -> Option<K>
2136 where
2137 K: Ord,
2138 {
2139 self.next()
2140 }
2141
2142 fn max(mut self) -> Option<K>
2143 where
2144 K: Ord,
2145 {
2146 self.next_back()
2147 }
2148}
2149
2150#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2151impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoKeys<K, V, A> {
2152 fn next_back(&mut self) -> Option<K> {
2153 self.inner.next_back().map(|(k, _)| k)
2154 }
2155}
2156
2157#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2158impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoKeys<K, V, A> {
2159 fn len(&self) -> usize {
2160 self.inner.len()
2161 }
2162}
2163
2164#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2165impl<K, V, A: Allocator + Clone> FusedIterator for IntoKeys<K, V, A> {}
2166
2167#[stable(feature = "default_iters", since = "1.70.0")]
2168impl<K, V, A> Default for IntoKeys<K, V, A>
2169where
2170 A: Allocator + Default + Clone,
2171{
2172 /// Creates an empty `btree_map::IntoKeys`.
2173 ///
2174 /// ```
2175 /// # use std::collections::btree_map;
2176 /// let iter: btree_map::IntoKeys<u8, u8> = Default::default();
2177 /// assert_eq!(iter.len(), 0);
2178 /// ```
2179 fn default() -> Self {
2180 IntoKeys { inner: Default::default() }
2181 }
2182}
2183
2184#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2185impl<K, V, A: Allocator + Clone> Iterator for IntoValues<K, V, A> {
2186 type Item = V;
2187
2188 fn next(&mut self) -> Option<V> {
2189 self.inner.next().map(|(_, v)| v)
2190 }
2191
2192 fn size_hint(&self) -> (usize, Option<usize>) {
2193 self.inner.size_hint()
2194 }
2195
2196 fn last(mut self) -> Option<V> {
2197 self.next_back()
2198 }
2199}
2200
2201#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2202impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoValues<K, V, A> {
2203 fn next_back(&mut self) -> Option<V> {
2204 self.inner.next_back().map(|(_, v)| v)
2205 }
2206}
2207
2208#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2209impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoValues<K, V, A> {
2210 fn len(&self) -> usize {
2211 self.inner.len()
2212 }
2213}
2214
2215#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2216impl<K, V, A: Allocator + Clone> FusedIterator for IntoValues<K, V, A> {}
2217
2218#[stable(feature = "default_iters", since = "1.70.0")]
2219impl<K, V, A> Default for IntoValues<K, V, A>
2220where
2221 A: Allocator + Default + Clone,
2222{
2223 /// Creates an empty `btree_map::IntoValues`.
2224 ///
2225 /// ```
2226 /// # use std::collections::btree_map;
2227 /// let iter: btree_map::IntoValues<u8, u8> = Default::default();
2228 /// assert_eq!(iter.len(), 0);
2229 /// ```
2230 fn default() -> Self {
2231 IntoValues { inner: Default::default() }
2232 }
2233}
2234
2235#[stable(feature = "btree_range", since = "1.17.0")]
2236impl<'a, K, V> DoubleEndedIterator for Range<'a, K, V> {
2237 fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
2238 self.inner.next_back_checked()
2239 }
2240}
2241
2242#[stable(feature = "fused", since = "1.26.0")]
2243impl<K, V> FusedIterator for Range<'_, K, V> {}
2244
2245#[stable(feature = "btree_range", since = "1.17.0")]
2246impl<K, V> Clone for Range<'_, K, V> {
2247 fn clone(&self) -> Self {
2248 Range { inner: self.inner.clone() }
2249 }
2250}
2251
2252#[stable(feature = "btree_range", since = "1.17.0")]
2253impl<'a, K, V> Iterator for RangeMut<'a, K, V> {
2254 type Item = (&'a K, &'a mut V);
2255
2256 fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
2257 self.inner.next_checked()
2258 }
2259
2260 fn last(mut self) -> Option<(&'a K, &'a mut V)> {
2261 self.next_back()
2262 }
2263
2264 fn min(mut self) -> Option<(&'a K, &'a mut V)>
2265 where
2266 (&'a K, &'a mut V): Ord,
2267 {
2268 self.next()
2269 }
2270
2271 fn max(mut self) -> Option<(&'a K, &'a mut V)>
2272 where
2273 (&'a K, &'a mut V): Ord,
2274 {
2275 self.next_back()
2276 }
2277}
2278
2279#[stable(feature = "btree_range", since = "1.17.0")]
2280impl<'a, K, V> DoubleEndedIterator for RangeMut<'a, K, V> {
2281 fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
2282 self.inner.next_back_checked()
2283 }
2284}
2285
2286#[stable(feature = "fused", since = "1.26.0")]
2287impl<K, V> FusedIterator for RangeMut<'_, K, V> {}
2288
2289#[stable(feature = "rust1", since = "1.0.0")]
2290impl<K: Ord, V> FromIterator<(K, V)> for BTreeMap<K, V> {
2291 /// Constructs a `BTreeMap<K, V>` from an iterator of key-value pairs.
2292 ///
2293 /// If the iterator produces any pairs with equal keys,
2294 /// all but one of the corresponding values will be dropped.
2295 fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> BTreeMap<K, V> {
2296 let mut inputs: Vec<_> = iter.into_iter().collect();
2297
2298 if inputs.is_empty() {
2299 return BTreeMap::new();
2300 }
2301
2302 // use stable sort to preserve the insertion order.
2303 inputs.sort_by(|a, b| a.0.cmp(&b.0));
2304 BTreeMap::bulk_build_from_sorted_iter(inputs, Global)
2305 }
2306}
2307
2308#[stable(feature = "rust1", since = "1.0.0")]
2309impl<K: Ord, V, A: Allocator + Clone> Extend<(K, V)> for BTreeMap<K, V, A> {
2310 #[inline]
2311 fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
2312 iter.into_iter().for_each(move |(k, v)| {
2313 self.insert(k, v);
2314 });
2315 }
2316
2317 #[inline]
2318 fn extend_one(&mut self, (k, v): (K, V)) {
2319 self.insert(k, v);
2320 }
2321}
2322
2323#[stable(feature = "extend_ref", since = "1.2.0")]
2324impl<'a, K: Ord + Copy, V: Copy, A: Allocator + Clone> Extend<(&'a K, &'a V)>
2325 for BTreeMap<K, V, A>
2326{
2327 fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: I) {
2328 self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
2329 }
2330
2331 #[inline]
2332 fn extend_one(&mut self, (&k, &v): (&'a K, &'a V)) {
2333 self.insert(k, v);
2334 }
2335}
2336
2337#[stable(feature = "rust1", since = "1.0.0")]
2338impl<K: Hash, V: Hash, A: Allocator + Clone> Hash for BTreeMap<K, V, A> {
2339 fn hash<H: Hasher>(&self, state: &mut H) {
2340 state.write_length_prefix(self.len());
2341 for elt in self {
2342 elt.hash(state);
2343 }
2344 }
2345}
2346
2347#[stable(feature = "rust1", since = "1.0.0")]
2348impl<K, V> Default for BTreeMap<K, V> {
2349 /// Creates an empty `BTreeMap`.
2350 fn default() -> BTreeMap<K, V> {
2351 BTreeMap::new()
2352 }
2353}
2354
2355#[stable(feature = "rust1", since = "1.0.0")]
2356impl<K: PartialEq, V: PartialEq, A: Allocator + Clone> PartialEq for BTreeMap<K, V, A> {
2357 fn eq(&self, other: &BTreeMap<K, V, A>) -> bool {
2358 self.len() == other.len() && self.iter().zip(other).all(|(a, b)| a == b)
2359 }
2360}
2361
2362#[stable(feature = "rust1", since = "1.0.0")]
2363impl<K: Eq, V: Eq, A: Allocator + Clone> Eq for BTreeMap<K, V, A> {}
2364
2365#[stable(feature = "rust1", since = "1.0.0")]
2366impl<K: PartialOrd, V: PartialOrd, A: Allocator + Clone> PartialOrd for BTreeMap<K, V, A> {
2367 #[inline]
2368 fn partial_cmp(&self, other: &BTreeMap<K, V, A>) -> Option<Ordering> {
2369 self.iter().partial_cmp(other.iter())
2370 }
2371}
2372
2373#[stable(feature = "rust1", since = "1.0.0")]
2374impl<K: Ord, V: Ord, A: Allocator + Clone> Ord for BTreeMap<K, V, A> {
2375 #[inline]
2376 fn cmp(&self, other: &BTreeMap<K, V, A>) -> Ordering {
2377 self.iter().cmp(other.iter())
2378 }
2379}
2380
2381#[stable(feature = "rust1", since = "1.0.0")]
2382impl<K: Debug, V: Debug, A: Allocator + Clone> Debug for BTreeMap<K, V, A> {
2383 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2384 f.debug_map().entries(self.iter()).finish()
2385 }
2386}
2387
2388#[stable(feature = "rust1", since = "1.0.0")]
2389impl<K, Q: ?Sized, V, A: Allocator + Clone> Index<&Q> for BTreeMap<K, V, A>
2390where
2391 K: Borrow<Q> + Ord,
2392 Q: Ord,
2393{
2394 type Output = V;
2395
2396 /// Returns a reference to the value corresponding to the supplied key.
2397 ///
2398 /// # Panics
2399 ///
2400 /// Panics if the key is not present in the `BTreeMap`.
2401 #[inline]
2402 fn index(&self, key: &Q) -> &V {
2403 self.get(key).expect("no entry found for key")
2404 }
2405}
2406
2407#[stable(feature = "std_collections_from_array", since = "1.56.0")]
2408impl<K: Ord, V, const N: usize> From<[(K, V); N]> for BTreeMap<K, V> {
2409 /// Converts a `[(K, V); N]` into a `BTreeMap<K, V>`.
2410 ///
2411 /// If any entries in the array have equal keys,
2412 /// all but one of the corresponding values will be dropped.
2413 ///
2414 /// ```
2415 /// use std::collections::BTreeMap;
2416 ///
2417 /// let map1 = BTreeMap::from([(1, 2), (3, 4)]);
2418 /// let map2: BTreeMap<_, _> = [(1, 2), (3, 4)].into();
2419 /// assert_eq!(map1, map2);
2420 /// ```
2421 fn from(mut arr: [(K, V); N]) -> Self {
2422 if N == 0 {
2423 return BTreeMap::new();
2424 }
2425
2426 // use stable sort to preserve the insertion order.
2427 arr.sort_by(|a, b| a.0.cmp(&b.0));
2428 BTreeMap::bulk_build_from_sorted_iter(arr, Global)
2429 }
2430}
2431
2432impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
2433 /// Gets an iterator over the entries of the map, sorted by key.
2434 ///
2435 /// # Examples
2436 ///
2437 /// ```
2438 /// use std::collections::BTreeMap;
2439 ///
2440 /// let mut map = BTreeMap::new();
2441 /// map.insert(3, "c");
2442 /// map.insert(2, "b");
2443 /// map.insert(1, "a");
2444 ///
2445 /// for (key, value) in map.iter() {
2446 /// println!("{key}: {value}");
2447 /// }
2448 ///
2449 /// let (first_key, first_value) = map.iter().next().unwrap();
2450 /// assert_eq!((*first_key, *first_value), (1, "a"));
2451 /// ```
2452 #[stable(feature = "rust1", since = "1.0.0")]
2453 pub fn iter(&self) -> Iter<'_, K, V> {
2454 if let Some(root) = &self.root {
2455 let full_range = root.reborrow().full_range();
2456
2457 Iter { range: full_range, length: self.length }
2458 } else {
2459 Iter { range: LazyLeafRange::none(), length: 0 }
2460 }
2461 }
2462
2463 /// Gets a mutable iterator over the entries of the map, sorted by key.
2464 ///
2465 /// # Examples
2466 ///
2467 /// ```
2468 /// use std::collections::BTreeMap;
2469 ///
2470 /// let mut map = BTreeMap::from([
2471 /// ("a", 1),
2472 /// ("b", 2),
2473 /// ("c", 3),
2474 /// ]);
2475 ///
2476 /// // add 10 to the value if the key isn't "a"
2477 /// for (key, value) in map.iter_mut() {
2478 /// if key != &"a" {
2479 /// *value += 10;
2480 /// }
2481 /// }
2482 /// ```
2483 #[stable(feature = "rust1", since = "1.0.0")]
2484 pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
2485 if let Some(root) = &mut self.root {
2486 let full_range = root.borrow_valmut().full_range();
2487
2488 IterMut { range: full_range, length: self.length, _marker: PhantomData }
2489 } else {
2490 IterMut { range: LazyLeafRange::none(), length: 0, _marker: PhantomData }
2491 }
2492 }
2493
2494 /// Gets an iterator over the keys of the map, in sorted order.
2495 ///
2496 /// # Examples
2497 ///
2498 /// ```
2499 /// use std::collections::BTreeMap;
2500 ///
2501 /// let mut a = BTreeMap::new();
2502 /// a.insert(2, "b");
2503 /// a.insert(1, "a");
2504 ///
2505 /// let keys: Vec<_> = a.keys().cloned().collect();
2506 /// assert_eq!(keys, [1, 2]);
2507 /// ```
2508 #[stable(feature = "rust1", since = "1.0.0")]
2509 pub fn keys(&self) -> Keys<'_, K, V> {
2510 Keys { inner: self.iter() }
2511 }
2512
2513 /// Gets an iterator over the values of the map, in order by key.
2514 ///
2515 /// # Examples
2516 ///
2517 /// ```
2518 /// use std::collections::BTreeMap;
2519 ///
2520 /// let mut a = BTreeMap::new();
2521 /// a.insert(1, "hello");
2522 /// a.insert(2, "goodbye");
2523 ///
2524 /// let values: Vec<&str> = a.values().cloned().collect();
2525 /// assert_eq!(values, ["hello", "goodbye"]);
2526 /// ```
2527 #[stable(feature = "rust1", since = "1.0.0")]
2528 pub fn values(&self) -> Values<'_, K, V> {
2529 Values { inner: self.iter() }
2530 }
2531
2532 /// Gets a mutable iterator over the values of the map, in order by key.
2533 ///
2534 /// # Examples
2535 ///
2536 /// ```
2537 /// use std::collections::BTreeMap;
2538 ///
2539 /// let mut a = BTreeMap::new();
2540 /// a.insert(1, String::from("hello"));
2541 /// a.insert(2, String::from("goodbye"));
2542 ///
2543 /// for value in a.values_mut() {
2544 /// value.push_str("!");
2545 /// }
2546 ///
2547 /// let values: Vec<String> = a.values().cloned().collect();
2548 /// assert_eq!(values, [String::from("hello!"),
2549 /// String::from("goodbye!")]);
2550 /// ```
2551 #[stable(feature = "map_values_mut", since = "1.10.0")]
2552 pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
2553 ValuesMut { inner: self.iter_mut() }
2554 }
2555
2556 /// Returns the number of elements in the map.
2557 ///
2558 /// # Examples
2559 ///
2560 /// ```
2561 /// use std::collections::BTreeMap;
2562 ///
2563 /// let mut a = BTreeMap::new();
2564 /// assert_eq!(a.len(), 0);
2565 /// a.insert(1, "a");
2566 /// assert_eq!(a.len(), 1);
2567 /// ```
2568 #[must_use]
2569 #[stable(feature = "rust1", since = "1.0.0")]
2570 #[rustc_const_unstable(
2571 feature = "const_btree_len",
2572 issue = "71835",
2573 implied_by = "const_btree_new"
2574 )]
2575 #[rustc_confusables("length", "size")]
2576 pub const fn len(&self) -> usize {
2577 self.length
2578 }
2579
2580 /// Returns `true` if the map contains no elements.
2581 ///
2582 /// # Examples
2583 ///
2584 /// ```
2585 /// use std::collections::BTreeMap;
2586 ///
2587 /// let mut a = BTreeMap::new();
2588 /// assert!(a.is_empty());
2589 /// a.insert(1, "a");
2590 /// assert!(!a.is_empty());
2591 /// ```
2592 #[must_use]
2593 #[stable(feature = "rust1", since = "1.0.0")]
2594 #[rustc_const_unstable(
2595 feature = "const_btree_len",
2596 issue = "71835",
2597 implied_by = "const_btree_new"
2598 )]
2599 pub const fn is_empty(&self) -> bool {
2600 self.len() == 0
2601 }
2602
2603 /// Returns a [`Cursor`] pointing at the gap before the smallest key
2604 /// greater than the given bound.
2605 ///
2606 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2607 /// gap before the smallest key greater than or equal to `x`.
2608 ///
2609 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2610 /// gap before the smallest key greater than `x`.
2611 ///
2612 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2613 /// gap before the smallest key in the map.
2614 ///
2615 /// # Examples
2616 ///
2617 /// ```
2618 /// #![feature(btree_cursors)]
2619 ///
2620 /// use std::collections::BTreeMap;
2621 /// use std::ops::Bound;
2622 ///
2623 /// let map = BTreeMap::from([
2624 /// (1, "a"),
2625 /// (2, "b"),
2626 /// (3, "c"),
2627 /// (4, "d"),
2628 /// ]);
2629 ///
2630 /// let cursor = map.lower_bound(Bound::Included(&2));
2631 /// assert_eq!(cursor.peek_prev(), Some((&1, &"a")));
2632 /// assert_eq!(cursor.peek_next(), Some((&2, &"b")));
2633 ///
2634 /// let cursor = map.lower_bound(Bound::Excluded(&2));
2635 /// assert_eq!(cursor.peek_prev(), Some((&2, &"b")));
2636 /// assert_eq!(cursor.peek_next(), Some((&3, &"c")));
2637 ///
2638 /// let cursor = map.lower_bound(Bound::Unbounded);
2639 /// assert_eq!(cursor.peek_prev(), None);
2640 /// assert_eq!(cursor.peek_next(), Some((&1, &"a")));
2641 /// ```
2642 #[unstable(feature = "btree_cursors", issue = "107540")]
2643 pub fn lower_bound<Q: ?Sized>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
2644 where
2645 K: Borrow<Q> + Ord,
2646 Q: Ord,
2647 {
2648 let root_node = match self.root.as_ref() {
2649 None => return Cursor { current: None, root: None },
2650 Some(root) => root.reborrow(),
2651 };
2652 let edge = root_node.lower_bound(SearchBound::from_range(bound));
2653 Cursor { current: Some(edge), root: self.root.as_ref() }
2654 }
2655
2656 /// Returns a [`CursorMut`] pointing at the gap before the smallest key
2657 /// greater than the given bound.
2658 ///
2659 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2660 /// gap before the smallest key greater than or equal to `x`.
2661 ///
2662 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2663 /// gap before the smallest key greater than `x`.
2664 ///
2665 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2666 /// gap before the smallest key in the map.
2667 ///
2668 /// # Examples
2669 ///
2670 /// ```
2671 /// #![feature(btree_cursors)]
2672 ///
2673 /// use std::collections::BTreeMap;
2674 /// use std::ops::Bound;
2675 ///
2676 /// let mut map = BTreeMap::from([
2677 /// (1, "a"),
2678 /// (2, "b"),
2679 /// (3, "c"),
2680 /// (4, "d"),
2681 /// ]);
2682 ///
2683 /// let mut cursor = map.lower_bound_mut(Bound::Included(&2));
2684 /// assert_eq!(cursor.peek_prev(), Some((&1, &mut "a")));
2685 /// assert_eq!(cursor.peek_next(), Some((&2, &mut "b")));
2686 ///
2687 /// let mut cursor = map.lower_bound_mut(Bound::Excluded(&2));
2688 /// assert_eq!(cursor.peek_prev(), Some((&2, &mut "b")));
2689 /// assert_eq!(cursor.peek_next(), Some((&3, &mut "c")));
2690 ///
2691 /// let mut cursor = map.lower_bound_mut(Bound::Unbounded);
2692 /// assert_eq!(cursor.peek_prev(), None);
2693 /// assert_eq!(cursor.peek_next(), Some((&1, &mut "a")));
2694 /// ```
2695 #[unstable(feature = "btree_cursors", issue = "107540")]
2696 pub fn lower_bound_mut<Q: ?Sized>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
2697 where
2698 K: Borrow<Q> + Ord,
2699 Q: Ord,
2700 {
2701 let (root, dormant_root) = DormantMutRef::new(&mut self.root);
2702 let root_node = match root.as_mut() {
2703 None => {
2704 return CursorMut {
2705 inner: CursorMutKey {
2706 current: None,
2707 root: dormant_root,
2708 length: &mut self.length,
2709 alloc: &mut *self.alloc,
2710 },
2711 };
2712 }
2713 Some(root) => root.borrow_mut(),
2714 };
2715 let edge = root_node.lower_bound(SearchBound::from_range(bound));
2716 CursorMut {
2717 inner: CursorMutKey {
2718 current: Some(edge),
2719 root: dormant_root,
2720 length: &mut self.length,
2721 alloc: &mut *self.alloc,
2722 },
2723 }
2724 }
2725
2726 /// Returns a [`Cursor`] pointing at the gap after the greatest key
2727 /// smaller than the given bound.
2728 ///
2729 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2730 /// gap after the greatest key smaller than or equal to `x`.
2731 ///
2732 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2733 /// gap after the greatest key smaller than `x`.
2734 ///
2735 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2736 /// gap after the greatest key in the map.
2737 ///
2738 /// # Examples
2739 ///
2740 /// ```
2741 /// #![feature(btree_cursors)]
2742 ///
2743 /// use std::collections::BTreeMap;
2744 /// use std::ops::Bound;
2745 ///
2746 /// let map = BTreeMap::from([
2747 /// (1, "a"),
2748 /// (2, "b"),
2749 /// (3, "c"),
2750 /// (4, "d"),
2751 /// ]);
2752 ///
2753 /// let cursor = map.upper_bound(Bound::Included(&3));
2754 /// assert_eq!(cursor.peek_prev(), Some((&3, &"c")));
2755 /// assert_eq!(cursor.peek_next(), Some((&4, &"d")));
2756 ///
2757 /// let cursor = map.upper_bound(Bound::Excluded(&3));
2758 /// assert_eq!(cursor.peek_prev(), Some((&2, &"b")));
2759 /// assert_eq!(cursor.peek_next(), Some((&3, &"c")));
2760 ///
2761 /// let cursor = map.upper_bound(Bound::Unbounded);
2762 /// assert_eq!(cursor.peek_prev(), Some((&4, &"d")));
2763 /// assert_eq!(cursor.peek_next(), None);
2764 /// ```
2765 #[unstable(feature = "btree_cursors", issue = "107540")]
2766 pub fn upper_bound<Q: ?Sized>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
2767 where
2768 K: Borrow<Q> + Ord,
2769 Q: Ord,
2770 {
2771 let root_node = match self.root.as_ref() {
2772 None => return Cursor { current: None, root: None },
2773 Some(root) => root.reborrow(),
2774 };
2775 let edge = root_node.upper_bound(SearchBound::from_range(bound));
2776 Cursor { current: Some(edge), root: self.root.as_ref() }
2777 }
2778
2779 /// Returns a [`CursorMut`] pointing at the gap after the greatest key
2780 /// smaller than the given bound.
2781 ///
2782 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2783 /// gap after the greatest key smaller than or equal to `x`.
2784 ///
2785 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2786 /// gap after the greatest key smaller than `x`.
2787 ///
2788 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2789 /// gap after the greatest key in the map.
2790 ///
2791 /// # Examples
2792 ///
2793 /// ```
2794 /// #![feature(btree_cursors)]
2795 ///
2796 /// use std::collections::BTreeMap;
2797 /// use std::ops::Bound;
2798 ///
2799 /// let mut map = BTreeMap::from([
2800 /// (1, "a"),
2801 /// (2, "b"),
2802 /// (3, "c"),
2803 /// (4, "d"),
2804 /// ]);
2805 ///
2806 /// let mut cursor = map.upper_bound_mut(Bound::Included(&3));
2807 /// assert_eq!(cursor.peek_prev(), Some((&3, &mut "c")));
2808 /// assert_eq!(cursor.peek_next(), Some((&4, &mut "d")));
2809 ///
2810 /// let mut cursor = map.upper_bound_mut(Bound::Excluded(&3));
2811 /// assert_eq!(cursor.peek_prev(), Some((&2, &mut "b")));
2812 /// assert_eq!(cursor.peek_next(), Some((&3, &mut "c")));
2813 ///
2814 /// let mut cursor = map.upper_bound_mut(Bound::Unbounded);
2815 /// assert_eq!(cursor.peek_prev(), Some((&4, &mut "d")));
2816 /// assert_eq!(cursor.peek_next(), None);
2817 /// ```
2818 #[unstable(feature = "btree_cursors", issue = "107540")]
2819 pub fn upper_bound_mut<Q: ?Sized>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
2820 where
2821 K: Borrow<Q> + Ord,
2822 Q: Ord,
2823 {
2824 let (root, dormant_root) = DormantMutRef::new(&mut self.root);
2825 let root_node = match root.as_mut() {
2826 None => {
2827 return CursorMut {
2828 inner: CursorMutKey {
2829 current: None,
2830 root: dormant_root,
2831 length: &mut self.length,
2832 alloc: &mut *self.alloc,
2833 },
2834 };
2835 }
2836 Some(root) => root.borrow_mut(),
2837 };
2838 let edge = root_node.upper_bound(SearchBound::from_range(bound));
2839 CursorMut {
2840 inner: CursorMutKey {
2841 current: Some(edge),
2842 root: dormant_root,
2843 length: &mut self.length,
2844 alloc: &mut *self.alloc,
2845 },
2846 }
2847 }
2848}
2849
2850/// A cursor over a `BTreeMap`.
2851///
2852/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth.
2853///
2854/// Cursors always point to a gap between two elements in the map, and can
2855/// operate on the two immediately adjacent elements.
2856///
2857/// A `Cursor` is created with the [`BTreeMap::lower_bound`] and [`BTreeMap::upper_bound`] methods.
2858#[unstable(feature = "btree_cursors", issue = "107540")]
2859pub struct Cursor<'a, K: 'a, V: 'a> {
2860 // If current is None then it means the tree has not been allocated yet.
2861 current: Option<Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>>,
2862 root: Option<&'a node::Root<K, V>>,
2863}
2864
2865#[unstable(feature = "btree_cursors", issue = "107540")]
2866impl<K, V> Clone for Cursor<'_, K, V> {
2867 fn clone(&self) -> Self {
2868 let Cursor { current, root } = *self;
2869 Cursor { current, root }
2870 }
2871}
2872
2873#[unstable(feature = "btree_cursors", issue = "107540")]
2874impl<K: Debug, V: Debug> Debug for Cursor<'_, K, V> {
2875 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2876 f.write_str("Cursor")
2877 }
2878}
2879
2880/// A cursor over a `BTreeMap` with editing operations.
2881///
2882/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
2883/// safely mutate the map during iteration. This is because the lifetime of its yielded
2884/// references is tied to its own lifetime, instead of just the underlying map. This means
2885/// cursors cannot yield multiple elements at once.
2886///
2887/// Cursors always point to a gap between two elements in the map, and can
2888/// operate on the two immediately adjacent elements.
2889///
2890/// A `CursorMut` is created with the [`BTreeMap::lower_bound_mut`] and [`BTreeMap::upper_bound_mut`]
2891/// methods.
2892#[unstable(feature = "btree_cursors", issue = "107540")]
2893pub struct CursorMut<
2894 'a,
2895 K: 'a,
2896 V: 'a,
2897 #[unstable(feature = "allocator_api", issue = "32838")] A = Global,
2898> {
2899 inner: CursorMutKey<'a, K, V, A>,
2900}
2901
2902#[unstable(feature = "btree_cursors", issue = "107540")]
2903impl<K: Debug, V: Debug, A> Debug for CursorMut<'_, K, V, A> {
2904 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2905 f.write_str("CursorMut")
2906 }
2907}
2908
2909/// A cursor over a `BTreeMap` with editing operations, and which allows
2910/// mutating the key of elements.
2911///
2912/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
2913/// safely mutate the map during iteration. This is because the lifetime of its yielded
2914/// references is tied to its own lifetime, instead of just the underlying map. This means
2915/// cursors cannot yield multiple elements at once.
2916///
2917/// Cursors always point to a gap between two elements in the map, and can
2918/// operate on the two immediately adjacent elements.
2919///
2920/// A `CursorMutKey` is created from a [`CursorMut`] with the
2921/// [`CursorMut::with_mutable_key`] method.
2922///
2923/// # Safety
2924///
2925/// Since this cursor allows mutating keys, you must ensure that the `BTreeMap`
2926/// invariants are maintained. Specifically:
2927///
2928/// * The key of the newly inserted element must be unique in the tree.
2929/// * All keys in the tree must remain in sorted order.
2930#[unstable(feature = "btree_cursors", issue = "107540")]
2931pub struct CursorMutKey<
2932 'a,
2933 K: 'a,
2934 V: 'a,
2935 #[unstable(feature = "allocator_api", issue = "32838")] A = Global,
2936> {
2937 // If current is None then it means the tree has not been allocated yet.
2938 current: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
2939 root: DormantMutRef<'a, Option<node::Root<K, V>>>,
2940 length: &'a mut usize,
2941 alloc: &'a mut A,
2942}
2943
2944#[unstable(feature = "btree_cursors", issue = "107540")]
2945impl<K: Debug, V: Debug, A> Debug for CursorMutKey<'_, K, V, A> {
2946 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2947 f.write_str("CursorMutKey")
2948 }
2949}
2950
2951impl<'a, K, V> Cursor<'a, K, V> {
2952 /// Advances the cursor to the next gap, returning the key and value of the
2953 /// element that it moved over.
2954 ///
2955 /// If the cursor is already at the end of the map then `None` is returned
2956 /// and the cursor is not moved.
2957 #[unstable(feature = "btree_cursors", issue = "107540")]
2958 pub fn next(&mut self) -> Option<(&'a K, &'a V)> {
2959 let current = self.current.take()?;
2960 match current.next_kv() {
2961 Ok(kv) => {
2962 let result = kv.into_kv();
2963 self.current = Some(kv.next_leaf_edge());
2964 Some(result)
2965 }
2966 Err(root) => {
2967 self.current = Some(root.last_leaf_edge());
2968 None
2969 }
2970 }
2971 }
2972
2973 /// Advances the cursor to the previous gap, returning the key and value of
2974 /// the element that it moved over.
2975 ///
2976 /// If the cursor is already at the start of the map then `None` is returned
2977 /// and the cursor is not moved.
2978 #[unstable(feature = "btree_cursors", issue = "107540")]
2979 pub fn prev(&mut self) -> Option<(&'a K, &'a V)> {
2980 let current = self.current.take()?;
2981 match current.next_back_kv() {
2982 Ok(kv) => {
2983 let result = kv.into_kv();
2984 self.current = Some(kv.next_back_leaf_edge());
2985 Some(result)
2986 }
2987 Err(root) => {
2988 self.current = Some(root.first_leaf_edge());
2989 None
2990 }
2991 }
2992 }
2993
2994 /// Returns a reference to the key and value of the next element without
2995 /// moving the cursor.
2996 ///
2997 /// If the cursor is at the end of the map then `None` is returned.
2998 #[unstable(feature = "btree_cursors", issue = "107540")]
2999 pub fn peek_next(&self) -> Option<(&'a K, &'a V)> {
3000 self.clone().next()
3001 }
3002
3003 /// Returns a reference to the key and value of the previous element
3004 /// without moving the cursor.
3005 ///
3006 /// If the cursor is at the start of the map then `None` is returned.
3007 #[unstable(feature = "btree_cursors", issue = "107540")]
3008 pub fn peek_prev(&self) -> Option<(&'a K, &'a V)> {
3009 self.clone().prev()
3010 }
3011}
3012
3013impl<'a, K, V, A> CursorMut<'a, K, V, A> {
3014 /// Advances the cursor to the next gap, returning the key and value of the
3015 /// element that it moved over.
3016 ///
3017 /// If the cursor is already at the end of the map then `None` is returned
3018 /// and the cursor is not moved.
3019 #[unstable(feature = "btree_cursors", issue = "107540")]
3020 pub fn next(&mut self) -> Option<(&K, &mut V)> {
3021 let (k, v) = self.inner.next()?;
3022 Some((&*k, v))
3023 }
3024
3025 /// Advances the cursor to the previous gap, returning the key and value of
3026 /// the element that it moved over.
3027 ///
3028 /// If the cursor is already at the start of the map then `None` is returned
3029 /// and the cursor is not moved.
3030 #[unstable(feature = "btree_cursors", issue = "107540")]
3031 pub fn prev(&mut self) -> Option<(&K, &mut V)> {
3032 let (k, v) = self.inner.prev()?;
3033 Some((&*k, v))
3034 }
3035
3036 /// Returns a reference to the key and value of the next element without
3037 /// moving the cursor.
3038 ///
3039 /// If the cursor is at the end of the map then `None` is returned.
3040 #[unstable(feature = "btree_cursors", issue = "107540")]
3041 pub fn peek_next(&mut self) -> Option<(&K, &mut V)> {
3042 let (k, v) = self.inner.peek_next()?;
3043 Some((&*k, v))
3044 }
3045
3046 /// Returns a reference to the key and value of the previous element
3047 /// without moving the cursor.
3048 ///
3049 /// If the cursor is at the start of the map then `None` is returned.
3050 #[unstable(feature = "btree_cursors", issue = "107540")]
3051 pub fn peek_prev(&mut self) -> Option<(&K, &mut V)> {
3052 let (k, v) = self.inner.peek_prev()?;
3053 Some((&*k, v))
3054 }
3055
3056 /// Returns a read-only cursor pointing to the same location as the
3057 /// `CursorMut`.
3058 ///
3059 /// The lifetime of the returned `Cursor` is bound to that of the
3060 /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
3061 /// `CursorMut` is frozen for the lifetime of the `Cursor`.
3062 #[unstable(feature = "btree_cursors", issue = "107540")]
3063 pub fn as_cursor(&self) -> Cursor<'_, K, V> {
3064 self.inner.as_cursor()
3065 }
3066
3067 /// Converts the cursor into a [`CursorMutKey`], which allows mutating
3068 /// the key of elements in the tree.
3069 ///
3070 /// # Safety
3071 ///
3072 /// Since this cursor allows mutating keys, you must ensure that the `BTreeMap`
3073 /// invariants are maintained. Specifically:
3074 ///
3075 /// * The key of the newly inserted element must be unique in the tree.
3076 /// * All keys in the tree must remain in sorted order.
3077 #[unstable(feature = "btree_cursors", issue = "107540")]
3078 pub unsafe fn with_mutable_key(self) -> CursorMutKey<'a, K, V, A> {
3079 self.inner
3080 }
3081}
3082
3083impl<'a, K, V, A> CursorMutKey<'a, K, V, A> {
3084 /// Advances the cursor to the next gap, returning the key and value of the
3085 /// element that it moved over.
3086 ///
3087 /// If the cursor is already at the end of the map then `None` is returned
3088 /// and the cursor is not moved.
3089 #[unstable(feature = "btree_cursors", issue = "107540")]
3090 pub fn next(&mut self) -> Option<(&mut K, &mut V)> {
3091 let current = self.current.take()?;
3092 match current.next_kv() {
3093 Ok(mut kv) => {
3094 // SAFETY: The key/value pointers remain valid even after the
3095 // cursor is moved forward. The lifetimes then prevent any
3096 // further access to the cursor.
3097 let (k, v) = unsafe { kv.reborrow_mut().into_kv_mut() };
3098 let (k, v) = (k as *mut _, v as *mut _);
3099 self.current = Some(kv.next_leaf_edge());
3100 Some(unsafe { (&mut *k, &mut *v) })
3101 }
3102 Err(root) => {
3103 self.current = Some(root.last_leaf_edge());
3104 None
3105 }
3106 }
3107 }
3108
3109 /// Advances the cursor to the previous gap, returning the key and value of
3110 /// the element that it moved over.
3111 ///
3112 /// If the cursor is already at the start of the map then `None` is returned
3113 /// and the cursor is not moved.
3114 #[unstable(feature = "btree_cursors", issue = "107540")]
3115 pub fn prev(&mut self) -> Option<(&mut K, &mut V)> {
3116 let current = self.current.take()?;
3117 match current.next_back_kv() {
3118 Ok(mut kv) => {
3119 // SAFETY: The key/value pointers remain valid even after the
3120 // cursor is moved forward. The lifetimes then prevent any
3121 // further access to the cursor.
3122 let (k, v) = unsafe { kv.reborrow_mut().into_kv_mut() };
3123 let (k, v) = (k as *mut _, v as *mut _);
3124 self.current = Some(kv.next_back_leaf_edge());
3125 Some(unsafe { (&mut *k, &mut *v) })
3126 }
3127 Err(root) => {
3128 self.current = Some(root.first_leaf_edge());
3129 None
3130 }
3131 }
3132 }
3133
3134 /// Returns a reference to the key and value of the next element without
3135 /// moving the cursor.
3136 ///
3137 /// If the cursor is at the end of the map then `None` is returned.
3138 #[unstable(feature = "btree_cursors", issue = "107540")]
3139 pub fn peek_next(&mut self) -> Option<(&mut K, &mut V)> {
3140 let current = self.current.as_mut()?;
3141 // SAFETY: We're not using this to mutate the tree.
3142 let kv = unsafe { current.reborrow_mut() }.next_kv().ok()?.into_kv_mut();
3143 Some(kv)
3144 }
3145
3146 /// Returns a reference to the key and value of the previous element
3147 /// without moving the cursor.
3148 ///
3149 /// If the cursor is at the start of the map then `None` is returned.
3150 #[unstable(feature = "btree_cursors", issue = "107540")]
3151 pub fn peek_prev(&mut self) -> Option<(&mut K, &mut V)> {
3152 let current = self.current.as_mut()?;
3153 // SAFETY: We're not using this to mutate the tree.
3154 let kv = unsafe { current.reborrow_mut() }.next_back_kv().ok()?.into_kv_mut();
3155 Some(kv)
3156 }
3157
3158 /// Returns a read-only cursor pointing to the same location as the
3159 /// `CursorMutKey`.
3160 ///
3161 /// The lifetime of the returned `Cursor` is bound to that of the
3162 /// `CursorMutKey`, which means it cannot outlive the `CursorMutKey` and that the
3163 /// `CursorMutKey` is frozen for the lifetime of the `Cursor`.
3164 #[unstable(feature = "btree_cursors", issue = "107540")]
3165 pub fn as_cursor(&self) -> Cursor<'_, K, V> {
3166 Cursor {
3167 // SAFETY: The tree is immutable while the cursor exists.
3168 root: unsafe { self.root.reborrow_shared().as_ref() },
3169 current: self.current.as_ref().map(|current| current.reborrow()),
3170 }
3171 }
3172}
3173
3174// Now the tree editing operations
3175impl<'a, K: Ord, V, A: Allocator + Clone> CursorMutKey<'a, K, V, A> {
3176 /// Inserts a new key-value pair into the map in the gap that the
3177 /// cursor is currently pointing to.
3178 ///
3179 /// After the insertion the cursor will be pointing at the gap before the
3180 /// newly inserted element.
3181 ///
3182 /// # Safety
3183 ///
3184 /// You must ensure that the `BTreeMap` invariants are maintained.
3185 /// Specifically:
3186 ///
3187 /// * The key of the newly inserted element must be unique in the tree.
3188 /// * All keys in the tree must remain in sorted order.
3189 #[unstable(feature = "btree_cursors", issue = "107540")]
3190 pub unsafe fn insert_after_unchecked(&mut self, key: K, value: V) {
3191 let edge = match self.current.take() {
3192 None => {
3193 // Tree is empty, allocate a new root.
3194 // SAFETY: We have no other reference to the tree.
3195 let root = unsafe { self.root.reborrow() };
3196 debug_assert!(root.is_none());
3197 let mut node = NodeRef::new_leaf(self.alloc.clone());
3198 // SAFETY: We don't touch the root while the handle is alive.
3199 let handle = unsafe { node.borrow_mut().push_with_handle(key, value) };
3200 *root = Some(node.forget_type());
3201 *self.length += 1;
3202 self.current = Some(handle.left_edge());
3203 return;
3204 }
3205 Some(current) => current,
3206 };
3207
3208 let handle = edge.insert_recursing(key, value, self.alloc.clone(), |ins| {
3209 drop(ins.left);
3210 // SAFETY: The handle to the newly inserted value is always on a
3211 // leaf node, so adding a new root node doesn't invalidate it.
3212 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3213 root.push_internal_level(self.alloc.clone()).push(ins.kv.0, ins.kv.1, ins.right)
3214 });
3215 self.current = Some(handle.left_edge());
3216 *self.length += 1;
3217 }
3218
3219 /// Inserts a new key-value pair into the map in the gap that the
3220 /// cursor is currently pointing to.
3221 ///
3222 /// After the insertion the cursor will be pointing at the gap after the
3223 /// newly inserted element.
3224 ///
3225 /// # Safety
3226 ///
3227 /// You must ensure that the `BTreeMap` invariants are maintained.
3228 /// Specifically:
3229 ///
3230 /// * The key of the newly inserted element must be unique in the tree.
3231 /// * All keys in the tree must remain in sorted order.
3232 #[unstable(feature = "btree_cursors", issue = "107540")]
3233 pub unsafe fn insert_before_unchecked(&mut self, key: K, value: V) {
3234 let edge = match self.current.take() {
3235 None => {
3236 // SAFETY: We have no other reference to the tree.
3237 match unsafe { self.root.reborrow() } {
3238 root @ None => {
3239 // Tree is empty, allocate a new root.
3240 let mut node = NodeRef::new_leaf(self.alloc.clone());
3241 // SAFETY: We don't touch the root while the handle is alive.
3242 let handle = unsafe { node.borrow_mut().push_with_handle(key, value) };
3243 *root = Some(node.forget_type());
3244 *self.length += 1;
3245 self.current = Some(handle.right_edge());
3246 return;
3247 }
3248 Some(root) => root.borrow_mut().last_leaf_edge(),
3249 }
3250 }
3251 Some(current) => current,
3252 };
3253
3254 let handle = edge.insert_recursing(key, value, self.alloc.clone(), |ins| {
3255 drop(ins.left);
3256 // SAFETY: The handle to the newly inserted value is always on a
3257 // leaf node, so adding a new root node doesn't invalidate it.
3258 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3259 root.push_internal_level(self.alloc.clone()).push(ins.kv.0, ins.kv.1, ins.right)
3260 });
3261 self.current = Some(handle.right_edge());
3262 *self.length += 1;
3263 }
3264
3265 /// Inserts a new key-value pair into the map in the gap that the
3266 /// cursor is currently pointing to.
3267 ///
3268 /// After the insertion the cursor will be pointing at the gap before the
3269 /// newly inserted element.
3270 ///
3271 /// If the inserted key is not greater than the key before the cursor
3272 /// (if any), or if it not less than the key after the cursor (if any),
3273 /// then an [`UnorderedKeyError`] is returned since this would
3274 /// invalidate the [`Ord`] invariant between the keys of the map.
3275 #[unstable(feature = "btree_cursors", issue = "107540")]
3276 pub fn insert_after(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3277 if let Some((prev, _)) = self.peek_prev() {
3278 if &key <= prev {
3279 return Err(UnorderedKeyError {});
3280 }
3281 }
3282 if let Some((next, _)) = self.peek_next() {
3283 if &key >= next {
3284 return Err(UnorderedKeyError {});
3285 }
3286 }
3287 unsafe {
3288 self.insert_after_unchecked(key, value);
3289 }
3290 Ok(())
3291 }
3292
3293 /// Inserts a new key-value pair into the map in the gap that the
3294 /// cursor is currently pointing to.
3295 ///
3296 /// After the insertion the cursor will be pointing at the gap after the
3297 /// newly inserted element.
3298 ///
3299 /// If the inserted key is not greater than the key before the cursor
3300 /// (if any), or if it not less than the key after the cursor (if any),
3301 /// then an [`UnorderedKeyError`] is returned since this would
3302 /// invalidate the [`Ord`] invariant between the keys of the map.
3303 #[unstable(feature = "btree_cursors", issue = "107540")]
3304 pub fn insert_before(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3305 if let Some((prev, _)) = self.peek_prev() {
3306 if &key <= prev {
3307 return Err(UnorderedKeyError {});
3308 }
3309 }
3310 if let Some((next, _)) = self.peek_next() {
3311 if &key >= next {
3312 return Err(UnorderedKeyError {});
3313 }
3314 }
3315 unsafe {
3316 self.insert_before_unchecked(key, value);
3317 }
3318 Ok(())
3319 }
3320
3321 /// Removes the next element from the `BTreeMap`.
3322 ///
3323 /// The element that was removed is returned. The cursor position is
3324 /// unchanged (before the removed element).
3325 #[unstable(feature = "btree_cursors", issue = "107540")]
3326 pub fn remove_next(&mut self) -> Option<(K, V)> {
3327 let current = self.current.take()?;
3328 if current.reborrow().next_kv().is_err() {
3329 self.current = Some(current);
3330 return None;
3331 }
3332 let mut emptied_internal_root = false;
3333 let (kv, pos) = current
3334 .next_kv()
3335 // This should be unwrap(), but that doesn't work because NodeRef
3336 // doesn't implement Debug. The condition is checked above.
3337 .ok()?
3338 .remove_kv_tracking(|| emptied_internal_root = true, self.alloc.clone());
3339 self.current = Some(pos);
3340 *self.length -= 1;
3341 if emptied_internal_root {
3342 // SAFETY: This is safe since current does not point within the now
3343 // empty root node.
3344 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3345 root.pop_internal_level(self.alloc.clone());
3346 }
3347 Some(kv)
3348 }
3349
3350 /// Removes the preceding element from the `BTreeMap`.
3351 ///
3352 /// The element that was removed is returned. The cursor position is
3353 /// unchanged (after the removed element).
3354 #[unstable(feature = "btree_cursors", issue = "107540")]
3355 pub fn remove_prev(&mut self) -> Option<(K, V)> {
3356 let current = self.current.take()?;
3357 if current.reborrow().next_back_kv().is_err() {
3358 self.current = Some(current);
3359 return None;
3360 }
3361 let mut emptied_internal_root = false;
3362 let (kv, pos) = current
3363 .next_back_kv()
3364 // This should be unwrap(), but that doesn't work because NodeRef
3365 // doesn't implement Debug. The condition is checked above.
3366 .ok()?
3367 .remove_kv_tracking(|| emptied_internal_root = true, self.alloc.clone());
3368 self.current = Some(pos);
3369 *self.length -= 1;
3370 if emptied_internal_root {
3371 // SAFETY: This is safe since current does not point within the now
3372 // empty root node.
3373 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3374 root.pop_internal_level(self.alloc.clone());
3375 }
3376 Some(kv)
3377 }
3378}
3379
3380impl<'a, K: Ord, V, A: Allocator + Clone> CursorMut<'a, K, V, A> {
3381 /// Inserts a new key-value pair into the map in the gap that the
3382 /// cursor is currently pointing to.
3383 ///
3384 /// After the insertion the cursor will be pointing at the gap after the
3385 /// newly inserted element.
3386 ///
3387 /// # Safety
3388 ///
3389 /// You must ensure that the `BTreeMap` invariants are maintained.
3390 /// Specifically:
3391 ///
3392 /// * The key of the newly inserted element must be unique in the tree.
3393 /// * All keys in the tree must remain in sorted order.
3394 #[unstable(feature = "btree_cursors", issue = "107540")]
3395 pub unsafe fn insert_after_unchecked(&mut self, key: K, value: V) {
3396 unsafe { self.inner.insert_after_unchecked(key, value) }
3397 }
3398
3399 /// Inserts a new key-value pair into the map in the gap that the
3400 /// cursor is currently pointing to.
3401 ///
3402 /// After the insertion the cursor will be pointing at the gap after the
3403 /// newly inserted element.
3404 ///
3405 /// # Safety
3406 ///
3407 /// You must ensure that the `BTreeMap` invariants are maintained.
3408 /// Specifically:
3409 ///
3410 /// * The key of the newly inserted element must be unique in the tree.
3411 /// * All keys in the tree must remain in sorted order.
3412 #[unstable(feature = "btree_cursors", issue = "107540")]
3413 pub unsafe fn insert_before_unchecked(&mut self, key: K, value: V) {
3414 unsafe { self.inner.insert_before_unchecked(key, value) }
3415 }
3416
3417 /// Inserts a new key-value pair into the map in the gap that the
3418 /// cursor is currently pointing to.
3419 ///
3420 /// After the insertion the cursor will be pointing at the gap before the
3421 /// newly inserted element.
3422 ///
3423 /// If the inserted key is not greater than the key before the cursor
3424 /// (if any), or if it not less than the key after the cursor (if any),
3425 /// then an [`UnorderedKeyError`] is returned since this would
3426 /// invalidate the [`Ord`] invariant between the keys of the map.
3427 #[unstable(feature = "btree_cursors", issue = "107540")]
3428 pub fn insert_after(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3429 self.inner.insert_after(key, value)
3430 }
3431
3432 /// Inserts a new key-value pair into the map in the gap that the
3433 /// cursor is currently pointing to.
3434 ///
3435 /// After the insertion the cursor will be pointing at the gap after the
3436 /// newly inserted element.
3437 ///
3438 /// If the inserted key is not greater than the key before the cursor
3439 /// (if any), or if it not less than the key after the cursor (if any),
3440 /// then an [`UnorderedKeyError`] is returned since this would
3441 /// invalidate the [`Ord`] invariant between the keys of the map.
3442 #[unstable(feature = "btree_cursors", issue = "107540")]
3443 pub fn insert_before(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3444 self.inner.insert_before(key, value)
3445 }
3446
3447 /// Removes the next element from the `BTreeMap`.
3448 ///
3449 /// The element that was removed is returned. The cursor position is
3450 /// unchanged (before the removed element).
3451 #[unstable(feature = "btree_cursors", issue = "107540")]
3452 pub fn remove_next(&mut self) -> Option<(K, V)> {
3453 self.inner.remove_next()
3454 }
3455
3456 /// Removes the preceding element from the `BTreeMap`.
3457 ///
3458 /// The element that was removed is returned. The cursor position is
3459 /// unchanged (after the removed element).
3460 #[unstable(feature = "btree_cursors", issue = "107540")]
3461 pub fn remove_prev(&mut self) -> Option<(K, V)> {
3462 self.inner.remove_prev()
3463 }
3464}
3465
3466/// Error type returned by [`CursorMut::insert_before`] and
3467/// [`CursorMut::insert_after`] if the key being inserted is not properly
3468/// ordered with regards to adjacent keys.
3469#[derive(Clone, PartialEq, Eq, Debug)]
3470#[unstable(feature = "btree_cursors", issue = "107540")]
3471pub struct UnorderedKeyError {}
3472
3473#[unstable(feature = "btree_cursors", issue = "107540")]
3474impl fmt::Display for UnorderedKeyError {
3475 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3476 write!(f, "key is not properly ordered relative to neighbors")
3477 }
3478}
3479
3480#[unstable(feature = "btree_cursors", issue = "107540")]
3481impl Error for UnorderedKeyError {}
3482
3483#[cfg(test)]
3484mod tests;