core/clone.rs
1//! The `Clone` trait for types that cannot be 'implicitly copied'.
2//!
3//! In Rust, some simple types are "implicitly copyable" and when you
4//! assign them or pass them as arguments, the receiver will get a copy,
5//! leaving the original value in place. These types do not require
6//! allocation to copy and do not have finalizers (i.e., they do not
7//! contain owned boxes or implement [`Drop`]), so the compiler considers
8//! them cheap and safe to copy. For other types copies must be made
9//! explicitly, by convention implementing the [`Clone`] trait and calling
10//! the [`clone`] method.
11//!
12//! [`clone`]: Clone::clone
13//!
14//! Basic usage example:
15//!
16//! ```
17//! let s = String::new(); // String type implements Clone
18//! let copy = s.clone(); // so we can clone it
19//! ```
20//!
21//! To easily implement the Clone trait, you can also use
22//! `#[derive(Clone)]`. Example:
23//!
24//! ```
25//! #[derive(Clone)] // we add the Clone trait to Morpheus struct
26//! struct Morpheus {
27//! blue_pill: f32,
28//! red_pill: i64,
29//! }
30//!
31//! fn main() {
32//! let f = Morpheus { blue_pill: 0.0, red_pill: 0 };
33//! let copy = f.clone(); // and now we can clone it!
34//! }
35//! ```
36
37#![stable(feature = "rust1", since = "1.0.0")]
38
39use crate::marker::{Destruct, PointeeSized};
40
41mod uninit;
42
43/// A common trait that allows explicit creation of a duplicate value.
44///
45/// Calling [`clone`] always produces a new value.
46/// However, for types that are references to other data (such as smart pointers or references),
47/// the new value may still point to the same underlying data, rather than duplicating it.
48/// See [`Clone::clone`] for more details.
49///
50/// This distinction is especially important when using `#[derive(Clone)]` on structs containing
51/// smart pointers like `Arc<Mutex<T>>` - the cloned struct will share mutable state with the
52/// original.
53///
54/// Differs from [`Copy`] in that [`Copy`] is implicit and an inexpensive bit-wise copy, while
55/// `Clone` is always explicit and may or may not be expensive. In order to enforce
56/// these characteristics, Rust does not allow you to reimplement [`Copy`], but you
57/// may reimplement `Clone` and run arbitrary code.
58///
59/// Since `Clone` is more general than [`Copy`], you can automatically make anything
60/// [`Copy`] be `Clone` as well.
61///
62/// ## Derivable
63///
64/// This trait can be used with `#[derive]` if all fields are `Clone`. The `derive`d
65/// implementation of [`Clone`] calls [`clone`] on each field.
66///
67/// [`clone`]: Clone::clone
68///
69/// For a generic struct, `#[derive]` implements `Clone` conditionally by adding bound `Clone` on
70/// generic parameters.
71///
72/// ```
73/// // `derive` implements Clone for Reading<T> when T is Clone.
74/// #[derive(Clone)]
75/// struct Reading<T> {
76/// frequency: T,
77/// }
78/// ```
79///
80/// ## How can I implement `Clone`?
81///
82/// Types that are [`Copy`] should have a trivial implementation of `Clone`. More formally:
83/// if `T: Copy`, `x: T`, and `y: &T`, then `let x = y.clone();` is equivalent to `let x = *y;`.
84/// Manual implementations should be careful to uphold this invariant; however, unsafe code
85/// must not rely on it to ensure memory safety.
86///
87/// An example is a generic struct holding a function pointer. In this case, the
88/// implementation of `Clone` cannot be `derive`d, but can be implemented as:
89///
90/// ```
91/// struct Generate<T>(fn() -> T);
92///
93/// impl<T> Copy for Generate<T> {}
94///
95/// impl<T> Clone for Generate<T> {
96/// fn clone(&self) -> Self {
97/// *self
98/// }
99/// }
100/// ```
101///
102/// If we `derive`:
103///
104/// ```
105/// #[derive(Copy, Clone)]
106/// struct Generate<T>(fn() -> T);
107/// ```
108///
109/// the auto-derived implementations will have unnecessary `T: Copy` and `T: Clone` bounds:
110///
111/// ```
112/// # struct Generate<T>(fn() -> T);
113///
114/// // Automatically derived
115/// impl<T: Copy> Copy for Generate<T> { }
116///
117/// // Automatically derived
118/// impl<T: Clone> Clone for Generate<T> {
119/// fn clone(&self) -> Generate<T> {
120/// Generate(Clone::clone(&self.0))
121/// }
122/// }
123/// ```
124///
125/// The bounds are unnecessary because clearly the function itself should be
126/// copy- and cloneable even if its return type is not:
127///
128/// ```compile_fail,E0599
129/// #[derive(Copy, Clone)]
130/// struct Generate<T>(fn() -> T);
131///
132/// struct NotCloneable;
133///
134/// fn generate_not_cloneable() -> NotCloneable {
135/// NotCloneable
136/// }
137///
138/// Generate(generate_not_cloneable).clone(); // error: trait bounds were not satisfied
139/// // Note: With the manual implementations the above line will compile.
140/// ```
141///
142/// ## Additional implementors
143///
144/// In addition to the [implementors listed below][impls],
145/// the following types also implement `Clone`:
146///
147/// * Function item types (i.e., the distinct types defined for each function)
148/// * Function pointer types (e.g., `fn() -> i32`)
149/// * Closure types, if they capture no value from the environment
150/// or if all such captured values implement `Clone` themselves.
151/// Note that variables captured by shared reference always implement `Clone`
152/// (even if the referent doesn't),
153/// while variables captured by mutable reference never implement `Clone`.
154///
155/// [impls]: #implementors
156#[stable(feature = "rust1", since = "1.0.0")]
157#[lang = "clone"]
158#[rustc_diagnostic_item = "Clone"]
159#[rustc_trivial_field_reads]
160#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
161#[const_trait]
162pub trait Clone: Sized {
163 /// Returns a duplicate of the value.
164 ///
165 /// Note that what "duplicate" means varies by type:
166 /// - For most types, this creates a deep, independent copy
167 /// - For reference types like `&T`, this creates another reference to the same value
168 /// - For smart pointers like [`Arc`] or [`Rc`], this increments the reference count
169 /// but still points to the same underlying data
170 ///
171 /// [`Arc`]: ../../std/sync/struct.Arc.html
172 /// [`Rc`]: ../../std/rc/struct.Rc.html
173 ///
174 /// # Examples
175 ///
176 /// ```
177 /// # #![allow(noop_method_call)]
178 /// let hello = "Hello"; // &str implements Clone
179 ///
180 /// assert_eq!("Hello", hello.clone());
181 /// ```
182 ///
183 /// Example with a reference-counted type:
184 ///
185 /// ```
186 /// use std::sync::{Arc, Mutex};
187 ///
188 /// let data = Arc::new(Mutex::new(vec![1, 2, 3]));
189 /// let data_clone = data.clone(); // Creates another Arc pointing to the same Mutex
190 ///
191 /// {
192 /// let mut lock = data.lock().unwrap();
193 /// lock.push(4);
194 /// }
195 ///
196 /// // Changes are visible through the clone because they share the same underlying data
197 /// assert_eq!(*data_clone.lock().unwrap(), vec![1, 2, 3, 4]);
198 /// ```
199 #[stable(feature = "rust1", since = "1.0.0")]
200 #[must_use = "cloning is often expensive and is not expected to have side effects"]
201 // Clone::clone is special because the compiler generates MIR to implement it for some types.
202 // See InstanceKind::CloneShim.
203 #[lang = "clone_fn"]
204 fn clone(&self) -> Self;
205
206 /// Performs copy-assignment from `source`.
207 ///
208 /// `a.clone_from(&b)` is equivalent to `a = b.clone()` in functionality,
209 /// but can be overridden to reuse the resources of `a` to avoid unnecessary
210 /// allocations.
211 #[inline]
212 #[stable(feature = "rust1", since = "1.0.0")]
213 fn clone_from(&mut self, source: &Self)
214 where
215 Self: ~const Destruct,
216 {
217 *self = source.clone()
218 }
219}
220
221/// Derive macro generating an impl of the trait `Clone`.
222#[rustc_builtin_macro]
223#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
224#[allow_internal_unstable(core_intrinsics, derive_clone_copy)]
225pub macro Clone($item:item) {
226 /* compiler built-in */
227}
228
229/// Trait for objects whose [`Clone`] impl is lightweight (e.g. reference-counted)
230///
231/// Cloning an object implementing this trait should in general:
232/// - be O(1) (constant) time regardless of the amount of data managed by the object,
233/// - not require a memory allocation,
234/// - not require copying more than roughly 64 bytes (a typical cache line size),
235/// - not block the current thread,
236/// - not have any semantic side effects (e.g. allocating a file descriptor), and
237/// - not have overhead larger than a couple of atomic operations.
238///
239/// The `UseCloned` trait does not provide a method; instead, it indicates that
240/// `Clone::clone` is lightweight, and allows the use of the `.use` syntax.
241///
242/// ## .use postfix syntax
243///
244/// Values can be `.use`d by adding `.use` postfix to the value you want to use.
245///
246/// ```ignore (this won't work until we land use)
247/// fn foo(f: Foo) {
248/// // if `Foo` implements `Copy` f would be copied into x.
249/// // if `Foo` implements `UseCloned` f would be cloned into x.
250/// // otherwise f would be moved into x.
251/// let x = f.use;
252/// // ...
253/// }
254/// ```
255///
256/// ## use closures
257///
258/// Use closures allow captured values to be automatically used.
259/// This is similar to have a closure that you would call `.use` over each captured value.
260#[unstable(feature = "ergonomic_clones", issue = "132290")]
261#[lang = "use_cloned"]
262pub trait UseCloned: Clone {
263 // Empty.
264}
265
266macro_rules! impl_use_cloned {
267 ($($t:ty)*) => {
268 $(
269 #[unstable(feature = "ergonomic_clones", issue = "132290")]
270 impl UseCloned for $t {}
271 )*
272 }
273}
274
275impl_use_cloned! {
276 usize u8 u16 u32 u64 u128
277 isize i8 i16 i32 i64 i128
278 f16 f32 f64 f128
279 bool char
280}
281
282// FIXME(aburka): these structs are used solely by #[derive] to
283// assert that every component of a type implements Clone or Copy.
284//
285// These structs should never appear in user code.
286#[doc(hidden)]
287#[allow(missing_debug_implementations)]
288#[unstable(
289 feature = "derive_clone_copy",
290 reason = "deriving hack, should not be public",
291 issue = "none"
292)]
293pub struct AssertParamIsClone<T: Clone + PointeeSized> {
294 _field: crate::marker::PhantomData<T>,
295}
296#[doc(hidden)]
297#[allow(missing_debug_implementations)]
298#[unstable(
299 feature = "derive_clone_copy",
300 reason = "deriving hack, should not be public",
301 issue = "none"
302)]
303pub struct AssertParamIsCopy<T: Copy + PointeeSized> {
304 _field: crate::marker::PhantomData<T>,
305}
306
307/// A generalization of [`Clone`] to [dynamically-sized types][DST] stored in arbitrary containers.
308///
309/// This trait is implemented for all types implementing [`Clone`], [slices](slice) of all
310/// such types, and other dynamically-sized types in the standard library.
311/// You may also implement this trait to enable cloning custom DSTs
312/// (structures containing dynamically-sized fields), or use it as a supertrait to enable
313/// cloning a [trait object].
314///
315/// This trait is normally used via operations on container types which support DSTs,
316/// so you should not typically need to call `.clone_to_uninit()` explicitly except when
317/// implementing such a container or otherwise performing explicit management of an allocation,
318/// or when implementing `CloneToUninit` itself.
319///
320/// # Safety
321///
322/// Implementations must ensure that when `.clone_to_uninit(dest)` returns normally rather than
323/// panicking, it always leaves `*dest` initialized as a valid value of type `Self`.
324///
325/// # Examples
326///
327// FIXME(#126799): when `Box::clone` allows use of `CloneToUninit`, rewrite these examples with it
328// since `Rc` is a distraction.
329///
330/// If you are defining a trait, you can add `CloneToUninit` as a supertrait to enable cloning of
331/// `dyn` values of your trait:
332///
333/// ```
334/// #![feature(clone_to_uninit)]
335/// use std::rc::Rc;
336///
337/// trait Foo: std::fmt::Debug + std::clone::CloneToUninit {
338/// fn modify(&mut self);
339/// fn value(&self) -> i32;
340/// }
341///
342/// impl Foo for i32 {
343/// fn modify(&mut self) {
344/// *self *= 10;
345/// }
346/// fn value(&self) -> i32 {
347/// *self
348/// }
349/// }
350///
351/// let first: Rc<dyn Foo> = Rc::new(1234);
352///
353/// let mut second = first.clone();
354/// Rc::make_mut(&mut second).modify(); // make_mut() will call clone_to_uninit()
355///
356/// assert_eq!(first.value(), 1234);
357/// assert_eq!(second.value(), 12340);
358/// ```
359///
360/// The following is an example of implementing `CloneToUninit` for a custom DST.
361/// (It is essentially a limited form of what `derive(CloneToUninit)` would do,
362/// if such a derive macro existed.)
363///
364/// ```
365/// #![feature(clone_to_uninit)]
366/// use std::clone::CloneToUninit;
367/// use std::mem::offset_of;
368/// use std::rc::Rc;
369///
370/// #[derive(PartialEq)]
371/// struct MyDst<T: ?Sized> {
372/// label: String,
373/// contents: T,
374/// }
375///
376/// unsafe impl<T: ?Sized + CloneToUninit> CloneToUninit for MyDst<T> {
377/// unsafe fn clone_to_uninit(&self, dest: *mut u8) {
378/// // The offset of `self.contents` is dynamic because it depends on the alignment of T
379/// // which can be dynamic (if `T = dyn SomeTrait`). Therefore, we have to obtain it
380/// // dynamically by examining `self`, rather than using `offset_of!`.
381/// //
382/// // SAFETY: `self` by definition points somewhere before `&self.contents` in the same
383/// // allocation.
384/// let offset_of_contents = unsafe {
385/// (&raw const self.contents).byte_offset_from_unsigned(self)
386/// };
387///
388/// // Clone the *sized* fields of `self` (just one, in this example).
389/// // (By cloning this first and storing it temporarily in a local variable, we avoid
390/// // leaking it in case of any panic, using the ordinary automatic cleanup of local
391/// // variables. Such a leak would be sound, but undesirable.)
392/// let label = self.label.clone();
393///
394/// // SAFETY: The caller must provide a `dest` such that these field offsets are valid
395/// // to write to.
396/// unsafe {
397/// // Clone the unsized field directly from `self` to `dest`.
398/// self.contents.clone_to_uninit(dest.add(offset_of_contents));
399///
400/// // Now write all the sized fields.
401/// //
402/// // Note that we only do this once all of the clone() and clone_to_uninit() calls
403/// // have completed, and therefore we know that there are no more possible panics;
404/// // this ensures no memory leaks in case of panic.
405/// dest.add(offset_of!(Self, label)).cast::<String>().write(label);
406/// }
407/// // All fields of the struct have been initialized; therefore, the struct is initialized,
408/// // and we have satisfied our `unsafe impl CloneToUninit` obligations.
409/// }
410/// }
411///
412/// fn main() {
413/// // Construct MyDst<[u8; 4]>, then coerce to MyDst<[u8]>.
414/// let first: Rc<MyDst<[u8]>> = Rc::new(MyDst {
415/// label: String::from("hello"),
416/// contents: [1, 2, 3, 4],
417/// });
418///
419/// let mut second = first.clone();
420/// // make_mut() will call clone_to_uninit().
421/// for elem in Rc::make_mut(&mut second).contents.iter_mut() {
422/// *elem *= 10;
423/// }
424///
425/// assert_eq!(first.contents, [1, 2, 3, 4]);
426/// assert_eq!(second.contents, [10, 20, 30, 40]);
427/// assert_eq!(second.label, "hello");
428/// }
429/// ```
430///
431/// # See Also
432///
433/// * [`Clone::clone_from`] is a safe function which may be used instead when [`Self: Sized`](Sized)
434/// and the destination is already initialized; it may be able to reuse allocations owned by
435/// the destination, whereas `clone_to_uninit` cannot, since its destination is assumed to be
436/// uninitialized.
437/// * [`ToOwned`], which allocates a new destination container.
438///
439/// [`ToOwned`]: ../../std/borrow/trait.ToOwned.html
440/// [DST]: https://doc.rust-lang.org/reference/dynamically-sized-types.html
441/// [trait object]: https://doc.rust-lang.org/reference/types/trait-object.html
442#[unstable(feature = "clone_to_uninit", issue = "126799")]
443pub unsafe trait CloneToUninit {
444 /// Performs copy-assignment from `self` to `dest`.
445 ///
446 /// This is analogous to `std::ptr::write(dest.cast(), self.clone())`,
447 /// except that `Self` may be a dynamically-sized type ([`!Sized`](Sized)).
448 ///
449 /// Before this function is called, `dest` may point to uninitialized memory.
450 /// After this function is called, `dest` will point to initialized memory; it will be
451 /// sound to create a `&Self` reference from the pointer with the [pointer metadata]
452 /// from `self`.
453 ///
454 /// # Safety
455 ///
456 /// Behavior is undefined if any of the following conditions are violated:
457 ///
458 /// * `dest` must be [valid] for writes for `size_of_val(self)` bytes.
459 /// * `dest` must be properly aligned to `align_of_val(self)`.
460 ///
461 /// [valid]: crate::ptr#safety
462 /// [pointer metadata]: crate::ptr::metadata()
463 ///
464 /// # Panics
465 ///
466 /// This function may panic. (For example, it might panic if memory allocation for a clone
467 /// of a value owned by `self` fails.)
468 /// If the call panics, then `*dest` should be treated as uninitialized memory; it must not be
469 /// read or dropped, because even if it was previously valid, it may have been partially
470 /// overwritten.
471 ///
472 /// The caller may wish to take care to deallocate the allocation pointed to by `dest`,
473 /// if applicable, to avoid a memory leak (but this is not a requirement).
474 ///
475 /// Implementors should avoid leaking values by, upon unwinding, dropping all component values
476 /// that might have already been created. (For example, if a `[Foo]` of length 3 is being
477 /// cloned, and the second of the three calls to `Foo::clone()` unwinds, then the first `Foo`
478 /// cloned should be dropped.)
479 unsafe fn clone_to_uninit(&self, dest: *mut u8);
480}
481
482#[unstable(feature = "clone_to_uninit", issue = "126799")]
483unsafe impl<T: Clone> CloneToUninit for T {
484 #[inline]
485 unsafe fn clone_to_uninit(&self, dest: *mut u8) {
486 // SAFETY: we're calling a specialization with the same contract
487 unsafe { <T as self::uninit::CopySpec>::clone_one(self, dest.cast::<T>()) }
488 }
489}
490
491#[unstable(feature = "clone_to_uninit", issue = "126799")]
492unsafe impl<T: Clone> CloneToUninit for [T] {
493 #[inline]
494 #[cfg_attr(debug_assertions, track_caller)]
495 unsafe fn clone_to_uninit(&self, dest: *mut u8) {
496 let dest: *mut [T] = dest.with_metadata_of(self);
497 // SAFETY: we're calling a specialization with the same contract
498 unsafe { <T as self::uninit::CopySpec>::clone_slice(self, dest) }
499 }
500}
501
502#[unstable(feature = "clone_to_uninit", issue = "126799")]
503unsafe impl CloneToUninit for str {
504 #[inline]
505 #[cfg_attr(debug_assertions, track_caller)]
506 unsafe fn clone_to_uninit(&self, dest: *mut u8) {
507 // SAFETY: str is just a [u8] with UTF-8 invariant
508 unsafe { self.as_bytes().clone_to_uninit(dest) }
509 }
510}
511
512#[unstable(feature = "clone_to_uninit", issue = "126799")]
513unsafe impl CloneToUninit for crate::ffi::CStr {
514 #[cfg_attr(debug_assertions, track_caller)]
515 unsafe fn clone_to_uninit(&self, dest: *mut u8) {
516 // SAFETY: For now, CStr is just a #[repr(trasnsparent)] [c_char] with some invariants.
517 // And we can cast [c_char] to [u8] on all supported platforms (see: to_bytes_with_nul).
518 // The pointer metadata properly preserves the length (so NUL is also copied).
519 // See: `cstr_metadata_is_length_with_nul` in tests.
520 unsafe { self.to_bytes_with_nul().clone_to_uninit(dest) }
521 }
522}
523
524#[unstable(feature = "bstr", issue = "134915")]
525unsafe impl CloneToUninit for crate::bstr::ByteStr {
526 #[inline]
527 #[cfg_attr(debug_assertions, track_caller)]
528 unsafe fn clone_to_uninit(&self, dst: *mut u8) {
529 // SAFETY: ByteStr is a `#[repr(transparent)]` wrapper around `[u8]`
530 unsafe { self.as_bytes().clone_to_uninit(dst) }
531 }
532}
533
534/// Implementations of `Clone` for primitive types.
535///
536/// Implementations that cannot be described in Rust
537/// are implemented in `traits::SelectionContext::copy_clone_conditions()`
538/// in `rustc_trait_selection`.
539mod impls {
540 use crate::marker::PointeeSized;
541
542 macro_rules! impl_clone {
543 ($($t:ty)*) => {
544 $(
545 #[stable(feature = "rust1", since = "1.0.0")]
546 impl Clone for $t {
547 #[inline(always)]
548 fn clone(&self) -> Self {
549 *self
550 }
551 }
552 )*
553 }
554 }
555
556 impl_clone! {
557 usize u8 u16 u32 u64 u128
558 isize i8 i16 i32 i64 i128
559 f16 f32 f64 f128
560 bool char
561 }
562
563 #[unstable(feature = "never_type", issue = "35121")]
564 impl Clone for ! {
565 #[inline]
566 fn clone(&self) -> Self {
567 *self
568 }
569 }
570
571 #[stable(feature = "rust1", since = "1.0.0")]
572 impl<T: PointeeSized> Clone for *const T {
573 #[inline(always)]
574 fn clone(&self) -> Self {
575 *self
576 }
577 }
578
579 #[stable(feature = "rust1", since = "1.0.0")]
580 impl<T: PointeeSized> Clone for *mut T {
581 #[inline(always)]
582 fn clone(&self) -> Self {
583 *self
584 }
585 }
586
587 /// Shared references can be cloned, but mutable references *cannot*!
588 #[stable(feature = "rust1", since = "1.0.0")]
589 impl<T: PointeeSized> Clone for &T {
590 #[inline(always)]
591 #[rustc_diagnostic_item = "noop_method_clone"]
592 fn clone(&self) -> Self {
593 *self
594 }
595 }
596
597 /// Shared references can be cloned, but mutable references *cannot*!
598 #[stable(feature = "rust1", since = "1.0.0")]
599 impl<T: PointeeSized> !Clone for &mut T {}
600}