rustc_middle/mir/
mod.rs

1//! MIR datatypes and passes. See the [rustc dev guide] for more info.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html
4
5use std::borrow::Cow;
6use std::fmt::{self, Debug, Formatter};
7use std::iter;
8use std::ops::{Index, IndexMut};
9
10pub use basic_blocks::{BasicBlocks, SwitchTargetValue};
11use either::Either;
12use polonius_engine::Atom;
13use rustc_abi::{FieldIdx, VariantIdx};
14pub use rustc_ast::Mutability;
15use rustc_data_structures::fx::{FxHashMap, FxHashSet};
16use rustc_data_structures::graph::dominators::Dominators;
17use rustc_errors::{DiagArgName, DiagArgValue, DiagMessage, ErrorGuaranteed, IntoDiagArg};
18use rustc_hir::def::{CtorKind, Namespace};
19use rustc_hir::def_id::{CRATE_DEF_ID, DefId};
20use rustc_hir::{
21    self as hir, BindingMode, ByRef, CoroutineDesugaring, CoroutineKind, HirId, ImplicitSelfKind,
22};
23use rustc_index::bit_set::DenseBitSet;
24use rustc_index::{Idx, IndexSlice, IndexVec};
25use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
26use rustc_serialize::{Decodable, Encodable};
27use rustc_span::source_map::Spanned;
28use rustc_span::{DUMMY_SP, Span, Symbol};
29use tracing::{debug, trace};
30
31pub use self::query::*;
32use crate::mir::interpret::{AllocRange, Scalar};
33use crate::ty::codec::{TyDecoder, TyEncoder};
34use crate::ty::print::{FmtPrinter, Printer, pretty_print_const, with_no_trimmed_paths};
35use crate::ty::{
36    self, GenericArg, GenericArgsRef, Instance, InstanceKind, List, Ty, TyCtxt, TypeVisitableExt,
37    TypingEnv, UserTypeAnnotationIndex,
38};
39
40mod basic_blocks;
41mod consts;
42pub mod coverage;
43mod generic_graph;
44pub mod generic_graphviz;
45pub mod graphviz;
46pub mod interpret;
47pub mod mono;
48pub mod pretty;
49mod query;
50mod statement;
51mod syntax;
52mod terminator;
53
54pub mod traversal;
55pub mod visit;
56
57pub use consts::*;
58use pretty::pretty_print_const_value;
59pub use statement::*;
60pub use syntax::*;
61pub use terminator::*;
62
63pub use self::generic_graph::graphviz_safe_def_name;
64pub use self::graphviz::write_mir_graphviz;
65pub use self::pretty::{
66    PassWhere, create_dump_file, display_allocation, dump_enabled, dump_mir, write_mir_pretty,
67};
68
69/// Types for locals
70pub type LocalDecls<'tcx> = IndexSlice<Local, LocalDecl<'tcx>>;
71
72pub trait HasLocalDecls<'tcx> {
73    fn local_decls(&self) -> &LocalDecls<'tcx>;
74}
75
76impl<'tcx> HasLocalDecls<'tcx> for IndexVec<Local, LocalDecl<'tcx>> {
77    #[inline]
78    fn local_decls(&self) -> &LocalDecls<'tcx> {
79        self
80    }
81}
82
83impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
84    #[inline]
85    fn local_decls(&self) -> &LocalDecls<'tcx> {
86        self
87    }
88}
89
90impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
91    #[inline]
92    fn local_decls(&self) -> &LocalDecls<'tcx> {
93        &self.local_decls
94    }
95}
96
97impl MirPhase {
98    pub fn name(&self) -> &'static str {
99        match *self {
100            MirPhase::Built => "built",
101            MirPhase::Analysis(AnalysisPhase::Initial) => "analysis",
102            MirPhase::Analysis(AnalysisPhase::PostCleanup) => "analysis-post-cleanup",
103            MirPhase::Runtime(RuntimePhase::Initial) => "runtime",
104            MirPhase::Runtime(RuntimePhase::PostCleanup) => "runtime-post-cleanup",
105            MirPhase::Runtime(RuntimePhase::Optimized) => "runtime-optimized",
106        }
107    }
108
109    /// Gets the (dialect, phase) index of the current `MirPhase`. Both numbers
110    /// are 1-indexed.
111    pub fn index(&self) -> (usize, usize) {
112        match *self {
113            MirPhase::Built => (1, 1),
114            MirPhase::Analysis(analysis_phase) => (2, 1 + analysis_phase as usize),
115            MirPhase::Runtime(runtime_phase) => (3, 1 + runtime_phase as usize),
116        }
117    }
118
119    /// Parses a `MirPhase` from a pair of strings. Panics if this isn't possible for any reason.
120    pub fn parse(dialect: String, phase: Option<String>) -> Self {
121        match &*dialect.to_ascii_lowercase() {
122            "built" => {
123                assert!(phase.is_none(), "Cannot specify a phase for `Built` MIR");
124                MirPhase::Built
125            }
126            "analysis" => Self::Analysis(AnalysisPhase::parse(phase)),
127            "runtime" => Self::Runtime(RuntimePhase::parse(phase)),
128            _ => bug!("Unknown MIR dialect: '{}'", dialect),
129        }
130    }
131}
132
133impl AnalysisPhase {
134    pub fn parse(phase: Option<String>) -> Self {
135        let Some(phase) = phase else {
136            return Self::Initial;
137        };
138
139        match &*phase.to_ascii_lowercase() {
140            "initial" => Self::Initial,
141            "post_cleanup" | "post-cleanup" | "postcleanup" => Self::PostCleanup,
142            _ => bug!("Unknown analysis phase: '{}'", phase),
143        }
144    }
145}
146
147impl RuntimePhase {
148    pub fn parse(phase: Option<String>) -> Self {
149        let Some(phase) = phase else {
150            return Self::Initial;
151        };
152
153        match &*phase.to_ascii_lowercase() {
154            "initial" => Self::Initial,
155            "post_cleanup" | "post-cleanup" | "postcleanup" => Self::PostCleanup,
156            "optimized" => Self::Optimized,
157            _ => bug!("Unknown runtime phase: '{}'", phase),
158        }
159    }
160}
161
162/// Where a specific `mir::Body` comes from.
163#[derive(Copy, Clone, Debug, PartialEq, Eq)]
164#[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable, TypeVisitable)]
165pub struct MirSource<'tcx> {
166    pub instance: InstanceKind<'tcx>,
167
168    /// If `Some`, this is a promoted rvalue within the parent function.
169    pub promoted: Option<Promoted>,
170}
171
172impl<'tcx> MirSource<'tcx> {
173    pub fn item(def_id: DefId) -> Self {
174        MirSource { instance: InstanceKind::Item(def_id), promoted: None }
175    }
176
177    pub fn from_instance(instance: InstanceKind<'tcx>) -> Self {
178        MirSource { instance, promoted: None }
179    }
180
181    #[inline]
182    pub fn def_id(&self) -> DefId {
183        self.instance.def_id()
184    }
185}
186
187/// Additional information carried by a MIR body when it is lowered from a coroutine.
188/// This information is modified as it is lowered during the `StateTransform` MIR pass,
189/// so not all fields will be active at a given time. For example, the `yield_ty` is
190/// taken out of the field after yields are turned into returns, and the `coroutine_drop`
191/// body is only populated after the state transform pass.
192#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
193pub struct CoroutineInfo<'tcx> {
194    /// The yield type of the function. This field is removed after the state transform pass.
195    pub yield_ty: Option<Ty<'tcx>>,
196
197    /// The resume type of the function. This field is removed after the state transform pass.
198    pub resume_ty: Option<Ty<'tcx>>,
199
200    /// Coroutine drop glue. This field is populated after the state transform pass.
201    pub coroutine_drop: Option<Body<'tcx>>,
202
203    /// Coroutine async drop glue.
204    pub coroutine_drop_async: Option<Body<'tcx>>,
205
206    /// When coroutine has sync drop, this is async proxy calling `coroutine_drop` sync impl.
207    pub coroutine_drop_proxy_async: Option<Body<'tcx>>,
208
209    /// The layout of a coroutine. Produced by the state transformation.
210    pub coroutine_layout: Option<CoroutineLayout<'tcx>>,
211
212    /// If this is a coroutine then record the type of source expression that caused this coroutine
213    /// to be created.
214    pub coroutine_kind: CoroutineKind,
215}
216
217impl<'tcx> CoroutineInfo<'tcx> {
218    // Sets up `CoroutineInfo` for a pre-coroutine-transform MIR body.
219    pub fn initial(
220        coroutine_kind: CoroutineKind,
221        yield_ty: Ty<'tcx>,
222        resume_ty: Ty<'tcx>,
223    ) -> CoroutineInfo<'tcx> {
224        CoroutineInfo {
225            coroutine_kind,
226            yield_ty: Some(yield_ty),
227            resume_ty: Some(resume_ty),
228            coroutine_drop: None,
229            coroutine_drop_async: None,
230            coroutine_drop_proxy_async: None,
231            coroutine_layout: None,
232        }
233    }
234}
235
236/// Some item that needs to monomorphize successfully for a MIR body to be considered well-formed.
237#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, HashStable, TyEncodable, TyDecodable)]
238#[derive(TypeFoldable, TypeVisitable)]
239pub enum MentionedItem<'tcx> {
240    /// A function that gets called. We don't necessarily know its precise type yet, since it can be
241    /// hidden behind a generic.
242    Fn(Ty<'tcx>),
243    /// A type that has its drop shim called.
244    Drop(Ty<'tcx>),
245    /// Unsizing casts might require vtables, so we have to record them.
246    UnsizeCast { source_ty: Ty<'tcx>, target_ty: Ty<'tcx> },
247    /// A closure that is coerced to a function pointer.
248    Closure(Ty<'tcx>),
249}
250
251/// The lowered representation of a single function.
252#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
253pub struct Body<'tcx> {
254    /// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`]
255    /// that indexes into this vector.
256    pub basic_blocks: BasicBlocks<'tcx>,
257
258    /// Records how far through the "desugaring and optimization" process this particular
259    /// MIR has traversed. This is particularly useful when inlining, since in that context
260    /// we instantiate the promoted constants and add them to our promoted vector -- but those
261    /// promoted items have already been optimized, whereas ours have not. This field allows
262    /// us to see the difference and forego optimization on the inlined promoted items.
263    pub phase: MirPhase,
264
265    /// How many passses we have executed since starting the current phase. Used for debug output.
266    pub pass_count: usize,
267
268    pub source: MirSource<'tcx>,
269
270    /// A list of source scopes; these are referenced by statements
271    /// and used for debuginfo. Indexed by a `SourceScope`.
272    pub source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
273
274    /// Additional information carried by a MIR body when it is lowered from a coroutine.
275    ///
276    /// Note that the coroutine drop shim, any promoted consts, and other synthetic MIR
277    /// bodies that come from processing a coroutine body are not typically coroutines
278    /// themselves, and should probably set this to `None` to avoid carrying redundant
279    /// information.
280    pub coroutine: Option<Box<CoroutineInfo<'tcx>>>,
281
282    /// Declarations of locals.
283    ///
284    /// The first local is the return value pointer, followed by `arg_count`
285    /// locals for the function arguments, followed by any user-declared
286    /// variables and temporaries.
287    pub local_decls: IndexVec<Local, LocalDecl<'tcx>>,
288
289    /// User type annotations.
290    pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
291
292    /// The number of arguments this function takes.
293    ///
294    /// Starting at local 1, `arg_count` locals will be provided by the caller
295    /// and can be assumed to be initialized.
296    ///
297    /// If this MIR was built for a constant, this will be 0.
298    pub arg_count: usize,
299
300    /// Mark an argument local (which must be a tuple) as getting passed as
301    /// its individual components at the LLVM level.
302    ///
303    /// This is used for the "rust-call" ABI.
304    pub spread_arg: Option<Local>,
305
306    /// Debug information pertaining to user variables, including captures.
307    pub var_debug_info: Vec<VarDebugInfo<'tcx>>,
308
309    /// A span representing this MIR, for error reporting.
310    pub span: Span,
311
312    /// Constants that are required to evaluate successfully for this MIR to be well-formed.
313    /// We hold in this field all the constants we are not able to evaluate yet.
314    /// `None` indicates that the list has not been computed yet.
315    ///
316    /// This is soundness-critical, we make a guarantee that all consts syntactically mentioned in a
317    /// function have successfully evaluated if the function ever gets executed at runtime.
318    pub required_consts: Option<Vec<ConstOperand<'tcx>>>,
319
320    /// Further items that were mentioned in this function and hence *may* become monomorphized,
321    /// depending on optimizations. We use this to avoid optimization-dependent compile errors: the
322    /// collector recursively traverses all "mentioned" items and evaluates all their
323    /// `required_consts`.
324    /// `None` indicates that the list has not been computed yet.
325    ///
326    /// This is *not* soundness-critical and the contents of this list are *not* a stable guarantee.
327    /// All that's relevant is that this set is optimization-level-independent, and that it includes
328    /// everything that the collector would consider "used". (For example, we currently compute this
329    /// set after drop elaboration, so some drop calls that can never be reached are not considered
330    /// "mentioned".) See the documentation of `CollectionMode` in
331    /// `compiler/rustc_monomorphize/src/collector.rs` for more context.
332    pub mentioned_items: Option<Vec<Spanned<MentionedItem<'tcx>>>>,
333
334    /// Does this body use generic parameters. This is used for the `ConstEvaluatable` check.
335    ///
336    /// Note that this does not actually mean that this body is not computable right now.
337    /// The repeat count in the following example is polymorphic, but can still be evaluated
338    /// without knowing anything about the type parameter `T`.
339    ///
340    /// ```rust
341    /// fn test<T>() {
342    ///     let _ = [0; size_of::<*mut T>()];
343    /// }
344    /// ```
345    ///
346    /// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization
347    /// removed the last mention of all generic params. We do not want to rely on optimizations and
348    /// potentially allow things like `[u8; size_of::<T>() * 0]` due to this.
349    pub is_polymorphic: bool,
350
351    /// The phase at which this MIR should be "injected" into the compilation process.
352    ///
353    /// Everything that comes before this `MirPhase` should be skipped.
354    ///
355    /// This is only `Some` if the function that this body comes from was annotated with `rustc_custom_mir`.
356    pub injection_phase: Option<MirPhase>,
357
358    pub tainted_by_errors: Option<ErrorGuaranteed>,
359
360    /// Coverage information collected from THIR/MIR during MIR building,
361    /// to be used by the `InstrumentCoverage` pass.
362    ///
363    /// Only present if coverage is enabled and this function is eligible.
364    /// Boxed to limit space overhead in non-coverage builds.
365    #[type_foldable(identity)]
366    #[type_visitable(ignore)]
367    pub coverage_info_hi: Option<Box<coverage::CoverageInfoHi>>,
368
369    /// Per-function coverage information added by the `InstrumentCoverage`
370    /// pass, to be used in conjunction with the coverage statements injected
371    /// into this body's blocks.
372    ///
373    /// If `-Cinstrument-coverage` is not active, or if an individual function
374    /// is not eligible for coverage, then this should always be `None`.
375    #[type_foldable(identity)]
376    #[type_visitable(ignore)]
377    pub function_coverage_info: Option<Box<coverage::FunctionCoverageInfo>>,
378}
379
380impl<'tcx> Body<'tcx> {
381    pub fn new(
382        source: MirSource<'tcx>,
383        basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
384        source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
385        local_decls: IndexVec<Local, LocalDecl<'tcx>>,
386        user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
387        arg_count: usize,
388        var_debug_info: Vec<VarDebugInfo<'tcx>>,
389        span: Span,
390        coroutine: Option<Box<CoroutineInfo<'tcx>>>,
391        tainted_by_errors: Option<ErrorGuaranteed>,
392    ) -> Self {
393        // We need `arg_count` locals, and one for the return place.
394        assert!(
395            local_decls.len() > arg_count,
396            "expected at least {} locals, got {}",
397            arg_count + 1,
398            local_decls.len()
399        );
400
401        let mut body = Body {
402            phase: MirPhase::Built,
403            pass_count: 0,
404            source,
405            basic_blocks: BasicBlocks::new(basic_blocks),
406            source_scopes,
407            coroutine,
408            local_decls,
409            user_type_annotations,
410            arg_count,
411            spread_arg: None,
412            var_debug_info,
413            span,
414            required_consts: None,
415            mentioned_items: None,
416            is_polymorphic: false,
417            injection_phase: None,
418            tainted_by_errors,
419            coverage_info_hi: None,
420            function_coverage_info: None,
421        };
422        body.is_polymorphic = body.has_non_region_param();
423        body
424    }
425
426    /// Returns a partially initialized MIR body containing only a list of basic blocks.
427    ///
428    /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
429    /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
430    /// crate.
431    pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
432        let mut body = Body {
433            phase: MirPhase::Built,
434            pass_count: 0,
435            source: MirSource::item(CRATE_DEF_ID.to_def_id()),
436            basic_blocks: BasicBlocks::new(basic_blocks),
437            source_scopes: IndexVec::new(),
438            coroutine: None,
439            local_decls: IndexVec::new(),
440            user_type_annotations: IndexVec::new(),
441            arg_count: 0,
442            spread_arg: None,
443            span: DUMMY_SP,
444            required_consts: None,
445            mentioned_items: None,
446            var_debug_info: Vec::new(),
447            is_polymorphic: false,
448            injection_phase: None,
449            tainted_by_errors: None,
450            coverage_info_hi: None,
451            function_coverage_info: None,
452        };
453        body.is_polymorphic = body.has_non_region_param();
454        body
455    }
456
457    #[inline]
458    pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
459        self.basic_blocks.as_mut()
460    }
461
462    pub fn typing_env(&self, tcx: TyCtxt<'tcx>) -> TypingEnv<'tcx> {
463        match self.phase {
464            // FIXME(#132279): we should reveal the opaques defined in the body during analysis.
465            MirPhase::Built | MirPhase::Analysis(_) => TypingEnv {
466                typing_mode: ty::TypingMode::non_body_analysis(),
467                param_env: tcx.param_env(self.source.def_id()),
468            },
469            MirPhase::Runtime(_) => TypingEnv::post_analysis(tcx, self.source.def_id()),
470        }
471    }
472
473    #[inline]
474    pub fn local_kind(&self, local: Local) -> LocalKind {
475        let index = local.as_usize();
476        if index == 0 {
477            debug_assert!(
478                self.local_decls[local].mutability == Mutability::Mut,
479                "return place should be mutable"
480            );
481
482            LocalKind::ReturnPointer
483        } else if index < self.arg_count + 1 {
484            LocalKind::Arg
485        } else {
486            LocalKind::Temp
487        }
488    }
489
490    /// Returns an iterator over all user-declared mutable locals.
491    #[inline]
492    pub fn mut_vars_iter(&self) -> impl Iterator<Item = Local> {
493        (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
494            let local = Local::new(index);
495            let decl = &self.local_decls[local];
496            (decl.is_user_variable() && decl.mutability.is_mut()).then_some(local)
497        })
498    }
499
500    /// Returns an iterator over all user-declared mutable arguments and locals.
501    #[inline]
502    pub fn mut_vars_and_args_iter(&self) -> impl Iterator<Item = Local> {
503        (1..self.local_decls.len()).filter_map(move |index| {
504            let local = Local::new(index);
505            let decl = &self.local_decls[local];
506            if (decl.is_user_variable() || index < self.arg_count + 1)
507                && decl.mutability == Mutability::Mut
508            {
509                Some(local)
510            } else {
511                None
512            }
513        })
514    }
515
516    /// Returns an iterator over all function arguments.
517    #[inline]
518    pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
519        (1..self.arg_count + 1).map(Local::new)
520    }
521
522    /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
523    /// locals that are neither arguments nor the return place).
524    #[inline]
525    pub fn vars_and_temps_iter(
526        &self,
527    ) -> impl DoubleEndedIterator<Item = Local> + ExactSizeIterator {
528        (self.arg_count + 1..self.local_decls.len()).map(Local::new)
529    }
530
531    #[inline]
532    pub fn drain_vars_and_temps(&mut self) -> impl Iterator<Item = LocalDecl<'tcx>> {
533        self.local_decls.drain(self.arg_count + 1..)
534    }
535
536    /// Returns the source info associated with `location`.
537    pub fn source_info(&self, location: Location) -> &SourceInfo {
538        let block = &self[location.block];
539        let stmts = &block.statements;
540        let idx = location.statement_index;
541        if idx < stmts.len() {
542            &stmts[idx].source_info
543        } else {
544            assert_eq!(idx, stmts.len());
545            &block.terminator().source_info
546        }
547    }
548
549    /// Returns the return type; it always return first element from `local_decls` array.
550    #[inline]
551    pub fn return_ty(&self) -> Ty<'tcx> {
552        self.local_decls[RETURN_PLACE].ty
553    }
554
555    /// Returns the return type; it always return first element from `local_decls` array.
556    #[inline]
557    pub fn bound_return_ty(&self) -> ty::EarlyBinder<'tcx, Ty<'tcx>> {
558        ty::EarlyBinder::bind(self.local_decls[RETURN_PLACE].ty)
559    }
560
561    /// Gets the location of the terminator for the given block.
562    #[inline]
563    pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
564        Location { block: bb, statement_index: self[bb].statements.len() }
565    }
566
567    pub fn stmt_at(&self, location: Location) -> Either<&Statement<'tcx>, &Terminator<'tcx>> {
568        let Location { block, statement_index } = location;
569        let block_data = &self.basic_blocks[block];
570        block_data
571            .statements
572            .get(statement_index)
573            .map(Either::Left)
574            .unwrap_or_else(|| Either::Right(block_data.terminator()))
575    }
576
577    #[inline]
578    pub fn yield_ty(&self) -> Option<Ty<'tcx>> {
579        self.coroutine.as_ref().and_then(|coroutine| coroutine.yield_ty)
580    }
581
582    #[inline]
583    pub fn resume_ty(&self) -> Option<Ty<'tcx>> {
584        self.coroutine.as_ref().and_then(|coroutine| coroutine.resume_ty)
585    }
586
587    /// Prefer going through [`TyCtxt::coroutine_layout`] rather than using this directly.
588    #[inline]
589    pub fn coroutine_layout_raw(&self) -> Option<&CoroutineLayout<'tcx>> {
590        self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_layout.as_ref())
591    }
592
593    #[inline]
594    pub fn coroutine_drop(&self) -> Option<&Body<'tcx>> {
595        self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_drop.as_ref())
596    }
597
598    #[inline]
599    pub fn coroutine_drop_async(&self) -> Option<&Body<'tcx>> {
600        self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_drop_async.as_ref())
601    }
602
603    #[inline]
604    pub fn coroutine_requires_async_drop(&self) -> bool {
605        self.coroutine_drop_async().is_some()
606    }
607
608    #[inline]
609    pub fn future_drop_poll(&self) -> Option<&Body<'tcx>> {
610        self.coroutine.as_ref().and_then(|coroutine| {
611            coroutine
612                .coroutine_drop_async
613                .as_ref()
614                .or(coroutine.coroutine_drop_proxy_async.as_ref())
615        })
616    }
617
618    #[inline]
619    pub fn coroutine_kind(&self) -> Option<CoroutineKind> {
620        self.coroutine.as_ref().map(|coroutine| coroutine.coroutine_kind)
621    }
622
623    #[inline]
624    pub fn should_skip(&self) -> bool {
625        let Some(injection_phase) = self.injection_phase else {
626            return false;
627        };
628        injection_phase > self.phase
629    }
630
631    #[inline]
632    pub fn is_custom_mir(&self) -> bool {
633        self.injection_phase.is_some()
634    }
635
636    /// If this basic block ends with a [`TerminatorKind::SwitchInt`] for which we can evaluate the
637    /// discriminant in monomorphization, we return the discriminant bits and the
638    /// [`SwitchTargets`], just so the caller doesn't also have to match on the terminator.
639    fn try_const_mono_switchint<'a>(
640        tcx: TyCtxt<'tcx>,
641        instance: Instance<'tcx>,
642        block: &'a BasicBlockData<'tcx>,
643    ) -> Option<(u128, &'a SwitchTargets)> {
644        // There are two places here we need to evaluate a constant.
645        let eval_mono_const = |constant: &ConstOperand<'tcx>| {
646            // FIXME(#132279): what is this, why are we using an empty environment here.
647            let typing_env = ty::TypingEnv::fully_monomorphized();
648            let mono_literal = instance.instantiate_mir_and_normalize_erasing_regions(
649                tcx,
650                typing_env,
651                crate::ty::EarlyBinder::bind(constant.const_),
652            );
653            mono_literal.try_eval_bits(tcx, typing_env)
654        };
655
656        let TerminatorKind::SwitchInt { discr, targets } = &block.terminator().kind else {
657            return None;
658        };
659
660        // If this is a SwitchInt(const _), then we can just evaluate the constant and return.
661        let discr = match discr {
662            Operand::Constant(constant) => {
663                let bits = eval_mono_const(constant)?;
664                return Some((bits, targets));
665            }
666            Operand::Move(place) | Operand::Copy(place) => place,
667        };
668
669        // MIR for `if false` actually looks like this:
670        // _1 = const _
671        // SwitchInt(_1)
672        //
673        // And MIR for if intrinsics::ub_checks() looks like this:
674        // _1 = UbChecks()
675        // SwitchInt(_1)
676        //
677        // So we're going to try to recognize this pattern.
678        //
679        // If we have a SwitchInt on a non-const place, we find the most recent statement that
680        // isn't a storage marker. If that statement is an assignment of a const to our
681        // discriminant place, we evaluate and return the const, as if we've const-propagated it
682        // into the SwitchInt.
683
684        let last_stmt = block.statements.iter().rev().find(|stmt| {
685            !matches!(stmt.kind, StatementKind::StorageDead(_) | StatementKind::StorageLive(_))
686        })?;
687
688        let (place, rvalue) = last_stmt.kind.as_assign()?;
689
690        if discr != place {
691            return None;
692        }
693
694        match rvalue {
695            Rvalue::NullaryOp(NullOp::UbChecks, _) => Some((tcx.sess.ub_checks() as u128, targets)),
696            Rvalue::Use(Operand::Constant(constant)) => {
697                let bits = eval_mono_const(constant)?;
698                Some((bits, targets))
699            }
700            _ => None,
701        }
702    }
703
704    /// For a `Location` in this scope, determine what the "caller location" at that point is. This
705    /// is interesting because of inlining: the `#[track_caller]` attribute of inlined functions
706    /// must be honored. Falls back to the `tracked_caller` value for `#[track_caller]` functions,
707    /// or the function's scope.
708    pub fn caller_location_span<T>(
709        &self,
710        mut source_info: SourceInfo,
711        caller_location: Option<T>,
712        tcx: TyCtxt<'tcx>,
713        from_span: impl FnOnce(Span) -> T,
714    ) -> T {
715        loop {
716            let scope_data = &self.source_scopes[source_info.scope];
717
718            if let Some((callee, callsite_span)) = scope_data.inlined {
719                // Stop inside the most nested non-`#[track_caller]` function,
720                // before ever reaching its caller (which is irrelevant).
721                if !callee.def.requires_caller_location(tcx) {
722                    return from_span(source_info.span);
723                }
724                source_info.span = callsite_span;
725            }
726
727            // Skip past all of the parents with `inlined: None`.
728            match scope_data.inlined_parent_scope {
729                Some(parent) => source_info.scope = parent,
730                None => break,
731            }
732        }
733
734        // No inlined `SourceScope`s, or all of them were `#[track_caller]`.
735        caller_location.unwrap_or_else(|| from_span(source_info.span))
736    }
737
738    #[track_caller]
739    pub fn set_required_consts(&mut self, required_consts: Vec<ConstOperand<'tcx>>) {
740        assert!(
741            self.required_consts.is_none(),
742            "required_consts for {:?} have already been set",
743            self.source.def_id()
744        );
745        self.required_consts = Some(required_consts);
746    }
747    #[track_caller]
748    pub fn required_consts(&self) -> &[ConstOperand<'tcx>] {
749        match &self.required_consts {
750            Some(l) => l,
751            None => panic!("required_consts for {:?} have not yet been set", self.source.def_id()),
752        }
753    }
754
755    #[track_caller]
756    pub fn set_mentioned_items(&mut self, mentioned_items: Vec<Spanned<MentionedItem<'tcx>>>) {
757        assert!(
758            self.mentioned_items.is_none(),
759            "mentioned_items for {:?} have already been set",
760            self.source.def_id()
761        );
762        self.mentioned_items = Some(mentioned_items);
763    }
764    #[track_caller]
765    pub fn mentioned_items(&self) -> &[Spanned<MentionedItem<'tcx>>] {
766        match &self.mentioned_items {
767            Some(l) => l,
768            None => panic!("mentioned_items for {:?} have not yet been set", self.source.def_id()),
769        }
770    }
771}
772
773impl<'tcx> Index<BasicBlock> for Body<'tcx> {
774    type Output = BasicBlockData<'tcx>;
775
776    #[inline]
777    fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
778        &self.basic_blocks[index]
779    }
780}
781
782impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
783    #[inline]
784    fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
785        &mut self.basic_blocks.as_mut()[index]
786    }
787}
788
789#[derive(Copy, Clone, Debug, HashStable, TypeFoldable, TypeVisitable)]
790pub enum ClearCrossCrate<T> {
791    Clear,
792    Set(T),
793}
794
795impl<T> ClearCrossCrate<T> {
796    pub fn as_ref(&self) -> ClearCrossCrate<&T> {
797        match self {
798            ClearCrossCrate::Clear => ClearCrossCrate::Clear,
799            ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
800        }
801    }
802
803    pub fn as_mut(&mut self) -> ClearCrossCrate<&mut T> {
804        match self {
805            ClearCrossCrate::Clear => ClearCrossCrate::Clear,
806            ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
807        }
808    }
809
810    pub fn unwrap_crate_local(self) -> T {
811        match self {
812            ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
813            ClearCrossCrate::Set(v) => v,
814        }
815    }
816}
817
818const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
819const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;
820
821impl<'tcx, E: TyEncoder<'tcx>, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
822    #[inline]
823    fn encode(&self, e: &mut E) {
824        if E::CLEAR_CROSS_CRATE {
825            return;
826        }
827
828        match *self {
829            ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
830            ClearCrossCrate::Set(ref val) => {
831                TAG_CLEAR_CROSS_CRATE_SET.encode(e);
832                val.encode(e);
833            }
834        }
835    }
836}
837impl<'tcx, D: TyDecoder<'tcx>, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
838    #[inline]
839    fn decode(d: &mut D) -> ClearCrossCrate<T> {
840        if D::CLEAR_CROSS_CRATE {
841            return ClearCrossCrate::Clear;
842        }
843
844        let discr = u8::decode(d);
845
846        match discr {
847            TAG_CLEAR_CROSS_CRATE_CLEAR => ClearCrossCrate::Clear,
848            TAG_CLEAR_CROSS_CRATE_SET => {
849                let val = T::decode(d);
850                ClearCrossCrate::Set(val)
851            }
852            tag => panic!("Invalid tag for ClearCrossCrate: {tag:?}"),
853        }
854    }
855}
856
857/// Grouped information about the source code origin of a MIR entity.
858/// Intended to be inspected by diagnostics and debuginfo.
859/// Most passes can work with it as a whole, within a single function.
860// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
861// `Hash`. Please ping @bjorn3 if removing them.
862#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
863pub struct SourceInfo {
864    /// The source span for the AST pertaining to this MIR entity.
865    pub span: Span,
866
867    /// The source scope, keeping track of which bindings can be
868    /// seen by debuginfo, active lint levels, etc.
869    pub scope: SourceScope,
870}
871
872impl SourceInfo {
873    #[inline]
874    pub fn outermost(span: Span) -> Self {
875        SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
876    }
877}
878
879///////////////////////////////////////////////////////////////////////////
880// Variables and temps
881
882rustc_index::newtype_index! {
883    #[derive(HashStable)]
884    #[encodable]
885    #[orderable]
886    #[debug_format = "_{}"]
887    pub struct Local {
888        const RETURN_PLACE = 0;
889    }
890}
891
892impl Atom for Local {
893    fn index(self) -> usize {
894        Idx::index(self)
895    }
896}
897
898/// Classifies locals into categories. See `Body::local_kind`.
899#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
900pub enum LocalKind {
901    /// User-declared variable binding or compiler-introduced temporary.
902    Temp,
903    /// Function argument.
904    Arg,
905    /// Location of function's return value.
906    ReturnPointer,
907}
908
909#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
910pub struct VarBindingForm<'tcx> {
911    /// Is variable bound via `x`, `mut x`, `ref x`, `ref mut x`, `mut ref x`, or `mut ref mut x`?
912    pub binding_mode: BindingMode,
913    /// If an explicit type was provided for this variable binding,
914    /// this holds the source Span of that type.
915    ///
916    /// NOTE: if you want to change this to a `HirId`, be wary that
917    /// doing so breaks incremental compilation (as of this writing),
918    /// while a `Span` does not cause our tests to fail.
919    pub opt_ty_info: Option<Span>,
920    /// Place of the RHS of the =, or the subject of the `match` where this
921    /// variable is initialized. None in the case of `let PATTERN;`.
922    /// Some((None, ..)) in the case of and `let [mut] x = ...` because
923    /// (a) the right-hand side isn't evaluated as a place expression.
924    /// (b) it gives a way to separate this case from the remaining cases
925    ///     for diagnostics.
926    pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
927    /// The span of the pattern in which this variable was bound.
928    pub pat_span: Span,
929}
930
931#[derive(Clone, Debug, TyEncodable, TyDecodable)]
932pub enum BindingForm<'tcx> {
933    /// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
934    Var(VarBindingForm<'tcx>),
935    /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
936    ImplicitSelf(ImplicitSelfKind),
937    /// Reference used in a guard expression to ensure immutability.
938    RefForGuard,
939}
940
941mod binding_form_impl {
942    use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
943    use rustc_query_system::ich::StableHashingContext;
944
945    impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
946        fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
947            use super::BindingForm::*;
948            std::mem::discriminant(self).hash_stable(hcx, hasher);
949
950            match self {
951                Var(binding) => binding.hash_stable(hcx, hasher),
952                ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
953                RefForGuard => (),
954            }
955        }
956    }
957}
958
959/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
960/// created during evaluation of expressions in a block tail
961/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
962///
963/// It is used to improve diagnostics when such temporaries are
964/// involved in borrow_check errors, e.g., explanations of where the
965/// temporaries come from, when their destructors are run, and/or how
966/// one might revise the code to satisfy the borrow checker's rules.
967#[derive(Clone, Copy, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
968pub struct BlockTailInfo {
969    /// If `true`, then the value resulting from evaluating this tail
970    /// expression is ignored by the block's expression context.
971    ///
972    /// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
973    /// but not e.g., `let _x = { ...; tail };`
974    pub tail_result_is_ignored: bool,
975
976    /// `Span` of the tail expression.
977    pub span: Span,
978}
979
980/// A MIR local.
981///
982/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
983/// argument, or the return place.
984#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
985pub struct LocalDecl<'tcx> {
986    /// Whether this is a mutable binding (i.e., `let x` or `let mut x`).
987    ///
988    /// Temporaries and the return place are always mutable.
989    pub mutability: Mutability,
990
991    pub local_info: ClearCrossCrate<Box<LocalInfo<'tcx>>>,
992
993    /// The type of this local.
994    pub ty: Ty<'tcx>,
995
996    /// If the user manually ascribed a type to this variable,
997    /// e.g., via `let x: T`, then we carry that type here. The MIR
998    /// borrow checker needs this information since it can affect
999    /// region inference.
1000    pub user_ty: Option<Box<UserTypeProjections>>,
1001
1002    /// The *syntactic* (i.e., not visibility) source scope the local is defined
1003    /// in. If the local was defined in a let-statement, this
1004    /// is *within* the let-statement, rather than outside
1005    /// of it.
1006    ///
1007    /// This is needed because the visibility source scope of locals within
1008    /// a let-statement is weird.
1009    ///
1010    /// The reason is that we want the local to be *within* the let-statement
1011    /// for lint purposes, but we want the local to be *after* the let-statement
1012    /// for names-in-scope purposes.
1013    ///
1014    /// That's it, if we have a let-statement like the one in this
1015    /// function:
1016    ///
1017    /// ```
1018    /// fn foo(x: &str) {
1019    ///     #[allow(unused_mut)]
1020    ///     let mut x: u32 = { // <- one unused mut
1021    ///         let mut y: u32 = x.parse().unwrap();
1022    ///         y + 2
1023    ///     };
1024    ///     drop(x);
1025    /// }
1026    /// ```
1027    ///
1028    /// Then, from a lint point of view, the declaration of `x: u32`
1029    /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
1030    /// lint scopes are the same as the AST/HIR nesting.
1031    ///
1032    /// However, from a name lookup point of view, the scopes look more like
1033    /// as if the let-statements were `match` expressions:
1034    ///
1035    /// ```
1036    /// fn foo(x: &str) {
1037    ///     match {
1038    ///         match x.parse::<u32>().unwrap() {
1039    ///             y => y + 2
1040    ///         }
1041    ///     } {
1042    ///         x => drop(x)
1043    ///     };
1044    /// }
1045    /// ```
1046    ///
1047    /// We care about the name-lookup scopes for debuginfo - if the
1048    /// debuginfo instruction pointer is at the call to `x.parse()`, we
1049    /// want `x` to refer to `x: &str`, but if it is at the call to
1050    /// `drop(x)`, we want it to refer to `x: u32`.
1051    ///
1052    /// To allow both uses to work, we need to have more than a single scope
1053    /// for a local. We have the `source_info.scope` represent the "syntactic"
1054    /// lint scope (with a variable being under its let block) while the
1055    /// `var_debug_info.source_info.scope` represents the "local variable"
1056    /// scope (where the "rest" of a block is under all prior let-statements).
1057    ///
1058    /// The end result looks like this:
1059    ///
1060    /// ```text
1061    /// ROOT SCOPE
1062    ///  │{ argument x: &str }
1063    ///  │
1064    ///  │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
1065    ///  │ │                         // in practice because I'm lazy.
1066    ///  │ │
1067    ///  │ │← x.source_info.scope
1068    ///  │ │← `x.parse().unwrap()`
1069    ///  │ │
1070    ///  │ │ │← y.source_info.scope
1071    ///  │ │
1072    ///  │ │ │{ let y: u32 }
1073    ///  │ │ │
1074    ///  │ │ │← y.var_debug_info.source_info.scope
1075    ///  │ │ │← `y + 2`
1076    ///  │
1077    ///  │ │{ let x: u32 }
1078    ///  │ │← x.var_debug_info.source_info.scope
1079    ///  │ │← `drop(x)` // This accesses `x: u32`.
1080    /// ```
1081    pub source_info: SourceInfo,
1082}
1083
1084/// Extra information about a some locals that's used for diagnostics and for
1085/// classifying variables into local variables, statics, etc, which is needed e.g.
1086/// for borrow checking.
1087///
1088/// Not used for non-StaticRef temporaries, the return place, or anonymous
1089/// function parameters.
1090#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1091pub enum LocalInfo<'tcx> {
1092    /// A user-defined local variable or function parameter
1093    ///
1094    /// The `BindingForm` is solely used for local diagnostics when generating
1095    /// warnings/errors when compiling the current crate, and therefore it need
1096    /// not be visible across crates.
1097    User(BindingForm<'tcx>),
1098    /// A temporary created that references the static with the given `DefId`.
1099    StaticRef { def_id: DefId, is_thread_local: bool },
1100    /// A temporary created that references the const with the given `DefId`
1101    ConstRef { def_id: DefId },
1102    /// A temporary created during the creation of an aggregate
1103    /// (e.g. a temporary for `foo` in `MyStruct { my_field: foo }`)
1104    AggregateTemp,
1105    /// A temporary created for evaluation of some subexpression of some block's tail expression
1106    /// (with no intervening statement context).
1107    BlockTailTemp(BlockTailInfo),
1108    /// A temporary created during evaluating `if` predicate, possibly for pattern matching for `let`s,
1109    /// and subject to Edition 2024 temporary lifetime rules
1110    IfThenRescopeTemp { if_then: HirId },
1111    /// A temporary created during the pass `Derefer` to avoid it's retagging
1112    DerefTemp,
1113    /// A temporary created for borrow checking.
1114    FakeBorrow,
1115    /// A local without anything interesting about it.
1116    Boring,
1117}
1118
1119impl<'tcx> LocalDecl<'tcx> {
1120    pub fn local_info(&self) -> &LocalInfo<'tcx> {
1121        self.local_info.as_ref().unwrap_crate_local()
1122    }
1123
1124    /// Returns `true` only if local is a binding that can itself be
1125    /// made mutable via the addition of the `mut` keyword, namely
1126    /// something like the occurrences of `x` in:
1127    /// - `fn foo(x: Type) { ... }`,
1128    /// - `let x = ...`,
1129    /// - or `match ... { C(x) => ... }`
1130    pub fn can_be_made_mutable(&self) -> bool {
1131        matches!(
1132            self.local_info(),
1133            LocalInfo::User(
1134                BindingForm::Var(VarBindingForm {
1135                    binding_mode: BindingMode(ByRef::No, _),
1136                    opt_ty_info: _,
1137                    opt_match_place: _,
1138                    pat_span: _,
1139                }) | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm),
1140            )
1141        )
1142    }
1143
1144    /// Returns `true` if local is definitely not a `ref ident` or
1145    /// `ref mut ident` binding. (Such bindings cannot be made into
1146    /// mutable bindings, but the inverse does not necessarily hold).
1147    pub fn is_nonref_binding(&self) -> bool {
1148        matches!(
1149            self.local_info(),
1150            LocalInfo::User(
1151                BindingForm::Var(VarBindingForm {
1152                    binding_mode: BindingMode(ByRef::No, _),
1153                    opt_ty_info: _,
1154                    opt_match_place: _,
1155                    pat_span: _,
1156                }) | BindingForm::ImplicitSelf(_),
1157            )
1158        )
1159    }
1160
1161    /// Returns `true` if this variable is a named variable or function
1162    /// parameter declared by the user.
1163    #[inline]
1164    pub fn is_user_variable(&self) -> bool {
1165        matches!(self.local_info(), LocalInfo::User(_))
1166    }
1167
1168    /// Returns `true` if this is a reference to a variable bound in a `match`
1169    /// expression that is used to access said variable for the guard of the
1170    /// match arm.
1171    pub fn is_ref_for_guard(&self) -> bool {
1172        matches!(self.local_info(), LocalInfo::User(BindingForm::RefForGuard))
1173    }
1174
1175    /// Returns `Some` if this is a reference to a static item that is used to
1176    /// access that static.
1177    pub fn is_ref_to_static(&self) -> bool {
1178        matches!(self.local_info(), LocalInfo::StaticRef { .. })
1179    }
1180
1181    /// Returns `Some` if this is a reference to a thread-local static item that is used to
1182    /// access that static.
1183    pub fn is_ref_to_thread_local(&self) -> bool {
1184        match self.local_info() {
1185            LocalInfo::StaticRef { is_thread_local, .. } => *is_thread_local,
1186            _ => false,
1187        }
1188    }
1189
1190    /// Returns `true` if this is a DerefTemp
1191    pub fn is_deref_temp(&self) -> bool {
1192        match self.local_info() {
1193            LocalInfo::DerefTemp => true,
1194            _ => false,
1195        }
1196    }
1197
1198    /// Returns `true` is the local is from a compiler desugaring, e.g.,
1199    /// `__next` from a `for` loop.
1200    #[inline]
1201    pub fn from_compiler_desugaring(&self) -> bool {
1202        self.source_info.span.desugaring_kind().is_some()
1203    }
1204
1205    /// Creates a new `LocalDecl` for a temporary, mutable.
1206    #[inline]
1207    pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
1208        Self::with_source_info(ty, SourceInfo::outermost(span))
1209    }
1210
1211    /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
1212    #[inline]
1213    pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
1214        LocalDecl {
1215            mutability: Mutability::Mut,
1216            local_info: ClearCrossCrate::Set(Box::new(LocalInfo::Boring)),
1217            ty,
1218            user_ty: None,
1219            source_info,
1220        }
1221    }
1222
1223    /// Converts `self` into same `LocalDecl` except tagged as immutable.
1224    #[inline]
1225    pub fn immutable(mut self) -> Self {
1226        self.mutability = Mutability::Not;
1227        self
1228    }
1229}
1230
1231#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1232pub enum VarDebugInfoContents<'tcx> {
1233    /// This `Place` only contains projection which satisfy `can_use_in_debuginfo`.
1234    Place(Place<'tcx>),
1235    Const(ConstOperand<'tcx>),
1236}
1237
1238impl<'tcx> Debug for VarDebugInfoContents<'tcx> {
1239    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
1240        match self {
1241            VarDebugInfoContents::Const(c) => write!(fmt, "{c}"),
1242            VarDebugInfoContents::Place(p) => write!(fmt, "{p:?}"),
1243        }
1244    }
1245}
1246
1247#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1248pub struct VarDebugInfoFragment<'tcx> {
1249    /// Type of the original user variable.
1250    /// This cannot contain a union or an enum.
1251    pub ty: Ty<'tcx>,
1252
1253    /// Where in the composite user variable this fragment is,
1254    /// represented as a "projection" into the composite variable.
1255    /// At lower levels, this corresponds to a byte/bit range.
1256    ///
1257    /// This can only contain `PlaceElem::Field`.
1258    // FIXME support this for `enum`s by either using DWARF's
1259    // more advanced control-flow features (unsupported by LLVM?)
1260    // to match on the discriminant, or by using custom type debuginfo
1261    // with non-overlapping variants for the composite variable.
1262    pub projection: Vec<PlaceElem<'tcx>>,
1263}
1264
1265/// Debug information pertaining to a user variable.
1266#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1267pub struct VarDebugInfo<'tcx> {
1268    pub name: Symbol,
1269
1270    /// Source info of the user variable, including the scope
1271    /// within which the variable is visible (to debuginfo)
1272    /// (see `LocalDecl`'s `source_info` field for more details).
1273    pub source_info: SourceInfo,
1274
1275    /// The user variable's data is split across several fragments,
1276    /// each described by a `VarDebugInfoFragment`.
1277    /// See DWARF 5's "2.6.1.2 Composite Location Descriptions"
1278    /// and LLVM's `DW_OP_LLVM_fragment` for more details on
1279    /// the underlying debuginfo feature this relies on.
1280    pub composite: Option<Box<VarDebugInfoFragment<'tcx>>>,
1281
1282    /// Where the data for this user variable is to be found.
1283    pub value: VarDebugInfoContents<'tcx>,
1284
1285    /// When present, indicates what argument number this variable is in the function that it
1286    /// originated from (starting from 1). Note, if MIR inlining is enabled, then this is the
1287    /// argument number in the original function before it was inlined.
1288    pub argument_index: Option<u16>,
1289}
1290
1291///////////////////////////////////////////////////////////////////////////
1292// BasicBlock
1293
1294rustc_index::newtype_index! {
1295    /// A node in the MIR [control-flow graph][CFG].
1296    ///
1297    /// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes
1298    /// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented
1299    /// as an edge in a graph between basic blocks.
1300    ///
1301    /// Basic blocks consist of a series of [statements][Statement], ending with a
1302    /// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors,
1303    /// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which
1304    /// are edges that go from a multi-successor node to a multi-predecessor node. This pass is
1305    /// needed because some analyses require that there are no critical edges in the CFG.
1306    ///
1307    /// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks);
1308    /// the actual data that a basic block holds is in [`BasicBlockData`].
1309    ///
1310    /// Read more about basic blocks in the [rustc-dev-guide][guide-mir].
1311    ///
1312    /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
1313    /// [data-flow analyses]:
1314    ///     https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis
1315    /// [`CriticalCallEdges`]: ../../rustc_mir_transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges
1316    /// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/
1317    #[derive(HashStable)]
1318    #[encodable]
1319    #[orderable]
1320    #[debug_format = "bb{}"]
1321    pub struct BasicBlock {
1322        const START_BLOCK = 0;
1323    }
1324}
1325
1326impl BasicBlock {
1327    pub fn start_location(self) -> Location {
1328        Location { block: self, statement_index: 0 }
1329    }
1330}
1331
1332///////////////////////////////////////////////////////////////////////////
1333// BasicBlockData
1334
1335/// Data for a basic block, including a list of its statements.
1336///
1337/// See [`BasicBlock`] for documentation on what basic blocks are at a high level.
1338#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1339pub struct BasicBlockData<'tcx> {
1340    /// List of statements in this block.
1341    pub statements: Vec<Statement<'tcx>>,
1342
1343    /// Terminator for this block.
1344    ///
1345    /// N.B., this should generally ONLY be `None` during construction.
1346    /// Therefore, you should generally access it via the
1347    /// `terminator()` or `terminator_mut()` methods. The only
1348    /// exception is that certain passes, such as `simplify_cfg`, swap
1349    /// out the terminator temporarily with `None` while they continue
1350    /// to recurse over the set of basic blocks.
1351    pub terminator: Option<Terminator<'tcx>>,
1352
1353    /// If true, this block lies on an unwind path. This is used
1354    /// during codegen where distinct kinds of basic blocks may be
1355    /// generated (particularly for MSVC cleanup). Unwind blocks must
1356    /// only branch to other unwind blocks.
1357    pub is_cleanup: bool,
1358}
1359
1360impl<'tcx> BasicBlockData<'tcx> {
1361    pub fn new(terminator: Option<Terminator<'tcx>>, is_cleanup: bool) -> BasicBlockData<'tcx> {
1362        BasicBlockData { statements: vec![], terminator, is_cleanup }
1363    }
1364
1365    /// Accessor for terminator.
1366    ///
1367    /// Terminator may not be None after construction of the basic block is complete. This accessor
1368    /// provides a convenient way to reach the terminator.
1369    #[inline]
1370    pub fn terminator(&self) -> &Terminator<'tcx> {
1371        self.terminator.as_ref().expect("invalid terminator state")
1372    }
1373
1374    #[inline]
1375    pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
1376        self.terminator.as_mut().expect("invalid terminator state")
1377    }
1378
1379    /// Does the block have no statements and an unreachable terminator?
1380    #[inline]
1381    pub fn is_empty_unreachable(&self) -> bool {
1382        self.statements.is_empty() && matches!(self.terminator().kind, TerminatorKind::Unreachable)
1383    }
1384
1385    /// Like [`Terminator::successors`] but tries to use information available from the [`Instance`]
1386    /// to skip successors like the `false` side of an `if const {`.
1387    ///
1388    /// This is used to implement [`traversal::mono_reachable`] and
1389    /// [`traversal::mono_reachable_reverse_postorder`].
1390    pub fn mono_successors(&self, tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> Successors<'_> {
1391        if let Some((bits, targets)) = Body::try_const_mono_switchint(tcx, instance, self) {
1392            targets.successors_for_value(bits)
1393        } else {
1394            self.terminator().successors()
1395        }
1396    }
1397}
1398
1399///////////////////////////////////////////////////////////////////////////
1400// Scopes
1401
1402rustc_index::newtype_index! {
1403    #[derive(HashStable)]
1404    #[encodable]
1405    #[debug_format = "scope[{}]"]
1406    pub struct SourceScope {
1407        const OUTERMOST_SOURCE_SCOPE = 0;
1408    }
1409}
1410
1411impl SourceScope {
1412    /// Finds the original HirId this MIR item came from.
1413    /// This is necessary after MIR optimizations, as otherwise we get a HirId
1414    /// from the function that was inlined instead of the function call site.
1415    pub fn lint_root(
1416        self,
1417        source_scopes: &IndexSlice<SourceScope, SourceScopeData<'_>>,
1418    ) -> Option<HirId> {
1419        let mut data = &source_scopes[self];
1420        // FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it
1421        // does not work as I thought it would. Needs more investigation and documentation.
1422        while data.inlined.is_some() {
1423            trace!(?data);
1424            data = &source_scopes[data.parent_scope.unwrap()];
1425        }
1426        trace!(?data);
1427        match &data.local_data {
1428            ClearCrossCrate::Set(data) => Some(data.lint_root),
1429            ClearCrossCrate::Clear => None,
1430        }
1431    }
1432
1433    /// The instance this source scope was inlined from, if any.
1434    #[inline]
1435    pub fn inlined_instance<'tcx>(
1436        self,
1437        source_scopes: &IndexSlice<SourceScope, SourceScopeData<'tcx>>,
1438    ) -> Option<ty::Instance<'tcx>> {
1439        let scope_data = &source_scopes[self];
1440        if let Some((inlined_instance, _)) = scope_data.inlined {
1441            Some(inlined_instance)
1442        } else if let Some(inlined_scope) = scope_data.inlined_parent_scope {
1443            Some(source_scopes[inlined_scope].inlined.unwrap().0)
1444        } else {
1445            None
1446        }
1447    }
1448}
1449
1450#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1451pub struct SourceScopeData<'tcx> {
1452    pub span: Span,
1453    pub parent_scope: Option<SourceScope>,
1454
1455    /// Whether this scope is the root of a scope tree of another body,
1456    /// inlined into this body by the MIR inliner.
1457    /// `ty::Instance` is the callee, and the `Span` is the call site.
1458    pub inlined: Option<(ty::Instance<'tcx>, Span)>,
1459
1460    /// Nearest (transitive) parent scope (if any) which is inlined.
1461    /// This is an optimization over walking up `parent_scope`
1462    /// until a scope with `inlined: Some(...)` is found.
1463    pub inlined_parent_scope: Option<SourceScope>,
1464
1465    /// Crate-local information for this source scope, that can't (and
1466    /// needn't) be tracked across crates.
1467    pub local_data: ClearCrossCrate<SourceScopeLocalData>,
1468}
1469
1470#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
1471pub struct SourceScopeLocalData {
1472    /// An `HirId` with lint levels equivalent to this scope's lint levels.
1473    pub lint_root: HirId,
1474}
1475
1476/// A collection of projections into user types.
1477///
1478/// They are projections because a binding can occur a part of a
1479/// parent pattern that has been ascribed a type.
1480///
1481/// It's a collection because there can be multiple type ascriptions on
1482/// the path from the root of the pattern down to the binding itself.
1483///
1484/// An example:
1485///
1486/// ```ignore (illustrative)
1487/// struct S<'a>((i32, &'a str), String);
1488/// let S((_, w): (i32, &'static str), _): S = ...;
1489/// //    ------  ^^^^^^^^^^^^^^^^^^^ (1)
1490/// //  ---------------------------------  ^ (2)
1491/// ```
1492///
1493/// The highlights labelled `(1)` show the subpattern `(_, w)` being
1494/// ascribed the type `(i32, &'static str)`.
1495///
1496/// The highlights labelled `(2)` show the whole pattern being
1497/// ascribed the type `S`.
1498///
1499/// In this example, when we descend to `w`, we will have built up the
1500/// following two projected types:
1501///
1502///   * base: `S`,                   projection: `(base.0).1`
1503///   * base: `(i32, &'static str)`, projection: `base.1`
1504///
1505/// The first will lead to the constraint `w: &'1 str` (for some
1506/// inferred region `'1`). The second will lead to the constraint `w:
1507/// &'static str`.
1508#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1509pub struct UserTypeProjections {
1510    pub contents: Vec<UserTypeProjection>,
1511}
1512
1513impl UserTypeProjections {
1514    pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
1515        self.contents.iter()
1516    }
1517}
1518
1519/// Encodes the effect of a user-supplied type annotation on the
1520/// subcomponents of a pattern. The effect is determined by applying the
1521/// given list of projections to some underlying base type. Often,
1522/// the projection element list `projs` is empty, in which case this
1523/// directly encodes a type in `base`. But in the case of complex patterns with
1524/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
1525/// in which case the `projs` vector is used.
1526///
1527/// Examples:
1528///
1529/// * `let x: T = ...` -- here, the `projs` vector is empty.
1530///
1531/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
1532///   `field[0]` (aka `.0`), indicating that the type of `s` is
1533///   determined by finding the type of the `.0` field from `T`.
1534#[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
1535#[derive(TypeFoldable, TypeVisitable)]
1536pub struct UserTypeProjection {
1537    pub base: UserTypeAnnotationIndex,
1538    pub projs: Vec<ProjectionKind>,
1539}
1540
1541rustc_index::newtype_index! {
1542    #[derive(HashStable)]
1543    #[encodable]
1544    #[orderable]
1545    #[debug_format = "promoted[{}]"]
1546    pub struct Promoted {}
1547}
1548
1549/// `Location` represents the position of the start of the statement; or, if
1550/// `statement_index` equals the number of statements, then the start of the
1551/// terminator.
1552#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
1553pub struct Location {
1554    /// The block that the location is within.
1555    pub block: BasicBlock,
1556
1557    pub statement_index: usize,
1558}
1559
1560impl fmt::Debug for Location {
1561    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1562        write!(fmt, "{:?}[{}]", self.block, self.statement_index)
1563    }
1564}
1565
1566impl Location {
1567    pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };
1568
1569    /// Returns the location immediately after this one within the enclosing block.
1570    ///
1571    /// Note that if this location represents a terminator, then the
1572    /// resulting location would be out of bounds and invalid.
1573    #[inline]
1574    pub fn successor_within_block(&self) -> Location {
1575        Location { block: self.block, statement_index: self.statement_index + 1 }
1576    }
1577
1578    /// Returns `true` if `other` is earlier in the control flow graph than `self`.
1579    pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
1580        // If we are in the same block as the other location and are an earlier statement
1581        // then we are a predecessor of `other`.
1582        if self.block == other.block && self.statement_index < other.statement_index {
1583            return true;
1584        }
1585
1586        let predecessors = body.basic_blocks.predecessors();
1587
1588        // If we're in another block, then we want to check that block is a predecessor of `other`.
1589        let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
1590        let mut visited = FxHashSet::default();
1591
1592        while let Some(block) = queue.pop() {
1593            // If we haven't visited this block before, then make sure we visit its predecessors.
1594            if visited.insert(block) {
1595                queue.extend(predecessors[block].iter().cloned());
1596            } else {
1597                continue;
1598            }
1599
1600            // If we found the block that `self` is in, then we are a predecessor of `other` (since
1601            // we found that block by looking at the predecessors of `other`).
1602            if self.block == block {
1603                return true;
1604            }
1605        }
1606
1607        false
1608    }
1609
1610    #[inline]
1611    pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
1612        if self.block == other.block {
1613            self.statement_index <= other.statement_index
1614        } else {
1615            dominators.dominates(self.block, other.block)
1616        }
1617    }
1618}
1619
1620/// `DefLocation` represents the location of a definition - either an argument or an assignment
1621/// within MIR body.
1622#[derive(Copy, Clone, Debug, PartialEq, Eq)]
1623pub enum DefLocation {
1624    Argument,
1625    Assignment(Location),
1626    CallReturn { call: BasicBlock, target: Option<BasicBlock> },
1627}
1628
1629impl DefLocation {
1630    #[inline]
1631    pub fn dominates(self, location: Location, dominators: &Dominators<BasicBlock>) -> bool {
1632        match self {
1633            DefLocation::Argument => true,
1634            DefLocation::Assignment(def) => {
1635                def.successor_within_block().dominates(location, dominators)
1636            }
1637            DefLocation::CallReturn { target: None, .. } => false,
1638            DefLocation::CallReturn { call, target: Some(target) } => {
1639                // The definition occurs on the call -> target edge. The definition dominates a use
1640                // if and only if the edge is on all paths from the entry to the use.
1641                //
1642                // Note that a call terminator has only one edge that can reach the target, so when
1643                // the call strongly dominates the target, all paths from the entry to the target
1644                // go through the call -> target edge.
1645                call != target
1646                    && dominators.dominates(call, target)
1647                    && dominators.dominates(target, location.block)
1648            }
1649        }
1650    }
1651}
1652
1653/// Checks if the specified `local` is used as the `self` parameter of a method call
1654/// in the provided `BasicBlock`. If it is, then the `DefId` of the called method is
1655/// returned.
1656pub fn find_self_call<'tcx>(
1657    tcx: TyCtxt<'tcx>,
1658    body: &Body<'tcx>,
1659    local: Local,
1660    block: BasicBlock,
1661) -> Option<(DefId, GenericArgsRef<'tcx>)> {
1662    debug!("find_self_call(local={:?}): terminator={:?}", local, body[block].terminator);
1663    if let Some(Terminator { kind: TerminatorKind::Call { func, args, .. }, .. }) =
1664        &body[block].terminator
1665        && let Operand::Constant(box ConstOperand { const_, .. }) = func
1666        && let ty::FnDef(def_id, fn_args) = *const_.ty().kind()
1667        && let Some(item) = tcx.opt_associated_item(def_id)
1668        && item.is_method()
1669        && let [Spanned { node: Operand::Move(self_place) | Operand::Copy(self_place), .. }, ..] =
1670            **args
1671    {
1672        if self_place.as_local() == Some(local) {
1673            return Some((def_id, fn_args));
1674        }
1675
1676        // Handle the case where `self_place` gets reborrowed.
1677        // This happens when the receiver is `&T`.
1678        for stmt in &body[block].statements {
1679            if let StatementKind::Assign(box (place, rvalue)) = &stmt.kind
1680                && let Some(reborrow_local) = place.as_local()
1681                && self_place.as_local() == Some(reborrow_local)
1682                && let Rvalue::Ref(_, _, deref_place) = rvalue
1683                && let PlaceRef { local: deref_local, projection: [ProjectionElem::Deref] } =
1684                    deref_place.as_ref()
1685                && deref_local == local
1686            {
1687                return Some((def_id, fn_args));
1688            }
1689        }
1690    }
1691    None
1692}
1693
1694// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
1695#[cfg(target_pointer_width = "64")]
1696mod size_asserts {
1697    use rustc_data_structures::static_assert_size;
1698
1699    use super::*;
1700    // tidy-alphabetical-start
1701    static_assert_size!(BasicBlockData<'_>, 128);
1702    static_assert_size!(LocalDecl<'_>, 40);
1703    static_assert_size!(SourceScopeData<'_>, 64);
1704    static_assert_size!(Statement<'_>, 32);
1705    static_assert_size!(Terminator<'_>, 96);
1706    static_assert_size!(VarDebugInfo<'_>, 88);
1707    // tidy-alphabetical-end
1708}
OSZAR »