alloc/collections/vec_deque/mod.rs
1//! A double-ended queue (deque) implemented with a growable ring buffer.
2//!
3//! This queue has *O*(1) amortized inserts and removals from both ends of the
4//! container. It also has *O*(1) indexing like a vector. The contained elements
5//! are not required to be copyable, and the queue will be sendable if the
6//! contained type is sendable.
7
8#![stable(feature = "rust1", since = "1.0.0")]
9
10use core::cmp::{self, Ordering};
11use core::hash::{Hash, Hasher};
12use core::iter::{ByRefSized, repeat_n, repeat_with};
13// This is used in a bunch of intra-doc links.
14// FIXME: For some reason, `#[cfg(doc)]` wasn't sufficient, resulting in
15// failures in linkchecker even though rustdoc built the docs just fine.
16#[allow(unused_imports)]
17use core::mem;
18use core::mem::{ManuallyDrop, SizedTypeProperties};
19use core::ops::{Index, IndexMut, Range, RangeBounds};
20use core::{fmt, ptr, slice};
21
22use crate::alloc::{Allocator, Global};
23use crate::collections::{TryReserveError, TryReserveErrorKind};
24use crate::raw_vec::RawVec;
25use crate::vec::Vec;
26
27#[macro_use]
28mod macros;
29
30#[stable(feature = "drain", since = "1.6.0")]
31pub use self::drain::Drain;
32
33mod drain;
34
35#[stable(feature = "rust1", since = "1.0.0")]
36pub use self::iter_mut::IterMut;
37
38mod iter_mut;
39
40#[stable(feature = "rust1", since = "1.0.0")]
41pub use self::into_iter::IntoIter;
42
43mod into_iter;
44
45#[stable(feature = "rust1", since = "1.0.0")]
46pub use self::iter::Iter;
47
48mod iter;
49
50use self::spec_extend::SpecExtend;
51
52mod spec_extend;
53
54use self::spec_from_iter::SpecFromIter;
55
56mod spec_from_iter;
57
58#[cfg(test)]
59mod tests;
60
61/// A double-ended queue implemented with a growable ring buffer.
62///
63/// The "default" usage of this type as a queue is to use [`push_back`] to add to
64/// the queue, and [`pop_front`] to remove from the queue. [`extend`] and [`append`]
65/// push onto the back in this manner, and iterating over `VecDeque` goes front
66/// to back.
67///
68/// A `VecDeque` with a known list of items can be initialized from an array:
69///
70/// ```
71/// use std::collections::VecDeque;
72///
73/// let deq = VecDeque::from([-1, 0, 1]);
74/// ```
75///
76/// Since `VecDeque` is a ring buffer, its elements are not necessarily contiguous
77/// in memory. If you want to access the elements as a single slice, such as for
78/// efficient sorting, you can use [`make_contiguous`]. It rotates the `VecDeque`
79/// so that its elements do not wrap, and returns a mutable slice to the
80/// now-contiguous element sequence.
81///
82/// [`push_back`]: VecDeque::push_back
83/// [`pop_front`]: VecDeque::pop_front
84/// [`extend`]: VecDeque::extend
85/// [`append`]: VecDeque::append
86/// [`make_contiguous`]: VecDeque::make_contiguous
87#[cfg_attr(not(test), rustc_diagnostic_item = "VecDeque")]
88#[stable(feature = "rust1", since = "1.0.0")]
89#[rustc_insignificant_dtor]
90pub struct VecDeque<
91 T,
92 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
93> {
94 // `self[0]`, if it exists, is `buf[head]`.
95 // `head < buf.capacity()`, unless `buf.capacity() == 0` when `head == 0`.
96 head: usize,
97 // the number of initialized elements, starting from the one at `head` and potentially wrapping around.
98 // if `len == 0`, the exact value of `head` is unimportant.
99 // if `T` is zero-Sized, then `self.len <= usize::MAX`, otherwise `self.len <= isize::MAX as usize`.
100 len: usize,
101 buf: RawVec<T, A>,
102}
103
104#[stable(feature = "rust1", since = "1.0.0")]
105impl<T: Clone, A: Allocator + Clone> Clone for VecDeque<T, A> {
106 #[track_caller]
107 fn clone(&self) -> Self {
108 let mut deq = Self::with_capacity_in(self.len(), self.allocator().clone());
109 deq.extend(self.iter().cloned());
110 deq
111 }
112
113 /// Overwrites the contents of `self` with a clone of the contents of `source`.
114 ///
115 /// This method is preferred over simply assigning `source.clone()` to `self`,
116 /// as it avoids reallocation if possible.
117 #[track_caller]
118 fn clone_from(&mut self, source: &Self) {
119 self.clear();
120 self.extend(source.iter().cloned());
121 }
122}
123
124#[stable(feature = "rust1", since = "1.0.0")]
125unsafe impl<#[may_dangle] T, A: Allocator> Drop for VecDeque<T, A> {
126 fn drop(&mut self) {
127 /// Runs the destructor for all items in the slice when it gets dropped (normally or
128 /// during unwinding).
129 struct Dropper<'a, T>(&'a mut [T]);
130
131 impl<'a, T> Drop for Dropper<'a, T> {
132 fn drop(&mut self) {
133 unsafe {
134 ptr::drop_in_place(self.0);
135 }
136 }
137 }
138
139 let (front, back) = self.as_mut_slices();
140 unsafe {
141 let _back_dropper = Dropper(back);
142 // use drop for [T]
143 ptr::drop_in_place(front);
144 }
145 // RawVec handles deallocation
146 }
147}
148
149#[stable(feature = "rust1", since = "1.0.0")]
150impl<T> Default for VecDeque<T> {
151 /// Creates an empty deque.
152 #[inline]
153 fn default() -> VecDeque<T> {
154 VecDeque::new()
155 }
156}
157
158impl<T, A: Allocator> VecDeque<T, A> {
159 /// Marginally more convenient
160 #[inline]
161 fn ptr(&self) -> *mut T {
162 self.buf.ptr()
163 }
164
165 /// Appends an element to the buffer.
166 ///
167 /// # Safety
168 ///
169 /// May only be called if `deque.len() < deque.capacity()`
170 #[inline]
171 unsafe fn push_unchecked(&mut self, element: T) {
172 // SAFETY: Because of the precondition, it's guaranteed that there is space
173 // in the logical array after the last element.
174 unsafe { self.buffer_write(self.to_physical_idx(self.len), element) };
175 // This can't overflow because `deque.len() < deque.capacity() <= usize::MAX`.
176 self.len += 1;
177 }
178
179 /// Moves an element out of the buffer
180 #[inline]
181 unsafe fn buffer_read(&mut self, off: usize) -> T {
182 unsafe { ptr::read(self.ptr().add(off)) }
183 }
184
185 /// Writes an element into the buffer, moving it.
186 #[inline]
187 unsafe fn buffer_write(&mut self, off: usize, value: T) {
188 unsafe {
189 ptr::write(self.ptr().add(off), value);
190 }
191 }
192
193 /// Returns a slice pointer into the buffer.
194 /// `range` must lie inside `0..self.capacity()`.
195 #[inline]
196 unsafe fn buffer_range(&self, range: Range<usize>) -> *mut [T] {
197 unsafe {
198 ptr::slice_from_raw_parts_mut(self.ptr().add(range.start), range.end - range.start)
199 }
200 }
201
202 /// Returns `true` if the buffer is at full capacity.
203 #[inline]
204 fn is_full(&self) -> bool {
205 self.len == self.capacity()
206 }
207
208 /// Returns the index in the underlying buffer for a given logical element
209 /// index + addend.
210 #[inline]
211 fn wrap_add(&self, idx: usize, addend: usize) -> usize {
212 wrap_index(idx.wrapping_add(addend), self.capacity())
213 }
214
215 #[inline]
216 fn to_physical_idx(&self, idx: usize) -> usize {
217 self.wrap_add(self.head, idx)
218 }
219
220 /// Returns the index in the underlying buffer for a given logical element
221 /// index - subtrahend.
222 #[inline]
223 fn wrap_sub(&self, idx: usize, subtrahend: usize) -> usize {
224 wrap_index(idx.wrapping_sub(subtrahend).wrapping_add(self.capacity()), self.capacity())
225 }
226
227 /// Copies a contiguous block of memory len long from src to dst
228 #[inline]
229 unsafe fn copy(&mut self, src: usize, dst: usize, len: usize) {
230 debug_assert!(
231 dst + len <= self.capacity(),
232 "cpy dst={} src={} len={} cap={}",
233 dst,
234 src,
235 len,
236 self.capacity()
237 );
238 debug_assert!(
239 src + len <= self.capacity(),
240 "cpy dst={} src={} len={} cap={}",
241 dst,
242 src,
243 len,
244 self.capacity()
245 );
246 unsafe {
247 ptr::copy(self.ptr().add(src), self.ptr().add(dst), len);
248 }
249 }
250
251 /// Copies a contiguous block of memory len long from src to dst
252 #[inline]
253 unsafe fn copy_nonoverlapping(&mut self, src: usize, dst: usize, len: usize) {
254 debug_assert!(
255 dst + len <= self.capacity(),
256 "cno dst={} src={} len={} cap={}",
257 dst,
258 src,
259 len,
260 self.capacity()
261 );
262 debug_assert!(
263 src + len <= self.capacity(),
264 "cno dst={} src={} len={} cap={}",
265 dst,
266 src,
267 len,
268 self.capacity()
269 );
270 unsafe {
271 ptr::copy_nonoverlapping(self.ptr().add(src), self.ptr().add(dst), len);
272 }
273 }
274
275 /// Copies a potentially wrapping block of memory len long from src to dest.
276 /// (abs(dst - src) + len) must be no larger than capacity() (There must be at
277 /// most one continuous overlapping region between src and dest).
278 unsafe fn wrap_copy(&mut self, src: usize, dst: usize, len: usize) {
279 debug_assert!(
280 cmp::min(src.abs_diff(dst), self.capacity() - src.abs_diff(dst)) + len
281 <= self.capacity(),
282 "wrc dst={} src={} len={} cap={}",
283 dst,
284 src,
285 len,
286 self.capacity()
287 );
288
289 // If T is a ZST, don't do any copying.
290 if T::IS_ZST || src == dst || len == 0 {
291 return;
292 }
293
294 let dst_after_src = self.wrap_sub(dst, src) < len;
295
296 let src_pre_wrap_len = self.capacity() - src;
297 let dst_pre_wrap_len = self.capacity() - dst;
298 let src_wraps = src_pre_wrap_len < len;
299 let dst_wraps = dst_pre_wrap_len < len;
300
301 match (dst_after_src, src_wraps, dst_wraps) {
302 (_, false, false) => {
303 // src doesn't wrap, dst doesn't wrap
304 //
305 // S . . .
306 // 1 [_ _ A A B B C C _]
307 // 2 [_ _ A A A A B B _]
308 // D . . .
309 //
310 unsafe {
311 self.copy(src, dst, len);
312 }
313 }
314 (false, false, true) => {
315 // dst before src, src doesn't wrap, dst wraps
316 //
317 // S . . .
318 // 1 [A A B B _ _ _ C C]
319 // 2 [A A B B _ _ _ A A]
320 // 3 [B B B B _ _ _ A A]
321 // . . D .
322 //
323 unsafe {
324 self.copy(src, dst, dst_pre_wrap_len);
325 self.copy(src + dst_pre_wrap_len, 0, len - dst_pre_wrap_len);
326 }
327 }
328 (true, false, true) => {
329 // src before dst, src doesn't wrap, dst wraps
330 //
331 // S . . .
332 // 1 [C C _ _ _ A A B B]
333 // 2 [B B _ _ _ A A B B]
334 // 3 [B B _ _ _ A A A A]
335 // . . D .
336 //
337 unsafe {
338 self.copy(src + dst_pre_wrap_len, 0, len - dst_pre_wrap_len);
339 self.copy(src, dst, dst_pre_wrap_len);
340 }
341 }
342 (false, true, false) => {
343 // dst before src, src wraps, dst doesn't wrap
344 //
345 // . . S .
346 // 1 [C C _ _ _ A A B B]
347 // 2 [C C _ _ _ B B B B]
348 // 3 [C C _ _ _ B B C C]
349 // D . . .
350 //
351 unsafe {
352 self.copy(src, dst, src_pre_wrap_len);
353 self.copy(0, dst + src_pre_wrap_len, len - src_pre_wrap_len);
354 }
355 }
356 (true, true, false) => {
357 // src before dst, src wraps, dst doesn't wrap
358 //
359 // . . S .
360 // 1 [A A B B _ _ _ C C]
361 // 2 [A A A A _ _ _ C C]
362 // 3 [C C A A _ _ _ C C]
363 // D . . .
364 //
365 unsafe {
366 self.copy(0, dst + src_pre_wrap_len, len - src_pre_wrap_len);
367 self.copy(src, dst, src_pre_wrap_len);
368 }
369 }
370 (false, true, true) => {
371 // dst before src, src wraps, dst wraps
372 //
373 // . . . S .
374 // 1 [A B C D _ E F G H]
375 // 2 [A B C D _ E G H H]
376 // 3 [A B C D _ E G H A]
377 // 4 [B C C D _ E G H A]
378 // . . D . .
379 //
380 debug_assert!(dst_pre_wrap_len > src_pre_wrap_len);
381 let delta = dst_pre_wrap_len - src_pre_wrap_len;
382 unsafe {
383 self.copy(src, dst, src_pre_wrap_len);
384 self.copy(0, dst + src_pre_wrap_len, delta);
385 self.copy(delta, 0, len - dst_pre_wrap_len);
386 }
387 }
388 (true, true, true) => {
389 // src before dst, src wraps, dst wraps
390 //
391 // . . S . .
392 // 1 [A B C D _ E F G H]
393 // 2 [A A B D _ E F G H]
394 // 3 [H A B D _ E F G H]
395 // 4 [H A B D _ E F F G]
396 // . . . D .
397 //
398 debug_assert!(src_pre_wrap_len > dst_pre_wrap_len);
399 let delta = src_pre_wrap_len - dst_pre_wrap_len;
400 unsafe {
401 self.copy(0, delta, len - src_pre_wrap_len);
402 self.copy(self.capacity() - delta, 0, delta);
403 self.copy(src, dst, dst_pre_wrap_len);
404 }
405 }
406 }
407 }
408
409 /// Copies all values from `src` to `dst`, wrapping around if needed.
410 /// Assumes capacity is sufficient.
411 #[inline]
412 unsafe fn copy_slice(&mut self, dst: usize, src: &[T]) {
413 debug_assert!(src.len() <= self.capacity());
414 let head_room = self.capacity() - dst;
415 if src.len() <= head_room {
416 unsafe {
417 ptr::copy_nonoverlapping(src.as_ptr(), self.ptr().add(dst), src.len());
418 }
419 } else {
420 let (left, right) = src.split_at(head_room);
421 unsafe {
422 ptr::copy_nonoverlapping(left.as_ptr(), self.ptr().add(dst), left.len());
423 ptr::copy_nonoverlapping(right.as_ptr(), self.ptr(), right.len());
424 }
425 }
426 }
427
428 /// Writes all values from `iter` to `dst`.
429 ///
430 /// # Safety
431 ///
432 /// Assumes no wrapping around happens.
433 /// Assumes capacity is sufficient.
434 #[inline]
435 unsafe fn write_iter(
436 &mut self,
437 dst: usize,
438 iter: impl Iterator<Item = T>,
439 written: &mut usize,
440 ) {
441 iter.enumerate().for_each(|(i, element)| unsafe {
442 self.buffer_write(dst + i, element);
443 *written += 1;
444 });
445 }
446
447 /// Writes all values from `iter` to `dst`, wrapping
448 /// at the end of the buffer and returns the number
449 /// of written values.
450 ///
451 /// # Safety
452 ///
453 /// Assumes that `iter` yields at most `len` items.
454 /// Assumes capacity is sufficient.
455 unsafe fn write_iter_wrapping(
456 &mut self,
457 dst: usize,
458 mut iter: impl Iterator<Item = T>,
459 len: usize,
460 ) -> usize {
461 struct Guard<'a, T, A: Allocator> {
462 deque: &'a mut VecDeque<T, A>,
463 written: usize,
464 }
465
466 impl<'a, T, A: Allocator> Drop for Guard<'a, T, A> {
467 fn drop(&mut self) {
468 self.deque.len += self.written;
469 }
470 }
471
472 let head_room = self.capacity() - dst;
473
474 let mut guard = Guard { deque: self, written: 0 };
475
476 if head_room >= len {
477 unsafe { guard.deque.write_iter(dst, iter, &mut guard.written) };
478 } else {
479 unsafe {
480 guard.deque.write_iter(
481 dst,
482 ByRefSized(&mut iter).take(head_room),
483 &mut guard.written,
484 );
485 guard.deque.write_iter(0, iter, &mut guard.written)
486 };
487 }
488
489 guard.written
490 }
491
492 /// Frobs the head and tail sections around to handle the fact that we
493 /// just reallocated. Unsafe because it trusts old_capacity.
494 #[inline]
495 unsafe fn handle_capacity_increase(&mut self, old_capacity: usize) {
496 let new_capacity = self.capacity();
497 debug_assert!(new_capacity >= old_capacity);
498
499 // Move the shortest contiguous section of the ring buffer
500 //
501 // H := head
502 // L := last element (`self.to_physical_idx(self.len - 1)`)
503 //
504 // H L
505 // [o o o o o o o o ]
506 // H L
507 // A [o o o o o o o o . . . . . . . . ]
508 // L H
509 // [o o o o o o o o ]
510 // H L
511 // B [. . . o o o o o o o o . . . . . ]
512 // L H
513 // [o o o o o o o o ]
514 // L H
515 // C [o o o o o o . . . . . . . . o o ]
516
517 // can't use is_contiguous() because the capacity is already updated.
518 if self.head <= old_capacity - self.len {
519 // A
520 // Nop
521 } else {
522 let head_len = old_capacity - self.head;
523 let tail_len = self.len - head_len;
524 if head_len > tail_len && new_capacity - old_capacity >= tail_len {
525 // B
526 unsafe {
527 self.copy_nonoverlapping(0, old_capacity, tail_len);
528 }
529 } else {
530 // C
531 let new_head = new_capacity - head_len;
532 unsafe {
533 // can't use copy_nonoverlapping here, because if e.g. head_len = 2
534 // and new_capacity = old_capacity + 1, then the heads overlap.
535 self.copy(self.head, new_head, head_len);
536 }
537 self.head = new_head;
538 }
539 }
540 debug_assert!(self.head < self.capacity() || self.capacity() == 0);
541 }
542}
543
544impl<T> VecDeque<T> {
545 /// Creates an empty deque.
546 ///
547 /// # Examples
548 ///
549 /// ```
550 /// use std::collections::VecDeque;
551 ///
552 /// let deque: VecDeque<u32> = VecDeque::new();
553 /// ```
554 #[inline]
555 #[stable(feature = "rust1", since = "1.0.0")]
556 #[rustc_const_stable(feature = "const_vec_deque_new", since = "1.68.0")]
557 #[must_use]
558 pub const fn new() -> VecDeque<T> {
559 // FIXME(const-hack): This should just be `VecDeque::new_in(Global)` once that hits stable.
560 VecDeque { head: 0, len: 0, buf: RawVec::new() }
561 }
562
563 /// Creates an empty deque with space for at least `capacity` elements.
564 ///
565 /// # Examples
566 ///
567 /// ```
568 /// use std::collections::VecDeque;
569 ///
570 /// let deque: VecDeque<u32> = VecDeque::with_capacity(10);
571 /// ```
572 #[inline]
573 #[stable(feature = "rust1", since = "1.0.0")]
574 #[must_use]
575 #[track_caller]
576 pub fn with_capacity(capacity: usize) -> VecDeque<T> {
577 Self::with_capacity_in(capacity, Global)
578 }
579
580 /// Creates an empty deque with space for at least `capacity` elements.
581 ///
582 /// # Errors
583 ///
584 /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
585 /// or if the allocator reports allocation failure.
586 ///
587 /// # Examples
588 ///
589 /// ```
590 /// # #![feature(try_with_capacity)]
591 /// # #[allow(unused)]
592 /// # fn example() -> Result<(), std::collections::TryReserveError> {
593 /// use std::collections::VecDeque;
594 ///
595 /// let deque: VecDeque<u32> = VecDeque::try_with_capacity(10)?;
596 /// # Ok(()) }
597 /// ```
598 #[inline]
599 #[unstable(feature = "try_with_capacity", issue = "91913")]
600 pub fn try_with_capacity(capacity: usize) -> Result<VecDeque<T>, TryReserveError> {
601 Ok(VecDeque { head: 0, len: 0, buf: RawVec::try_with_capacity_in(capacity, Global)? })
602 }
603}
604
605impl<T, A: Allocator> VecDeque<T, A> {
606 /// Creates an empty deque.
607 ///
608 /// # Examples
609 ///
610 /// ```
611 /// use std::collections::VecDeque;
612 ///
613 /// let deque: VecDeque<u32> = VecDeque::new();
614 /// ```
615 #[inline]
616 #[unstable(feature = "allocator_api", issue = "32838")]
617 pub const fn new_in(alloc: A) -> VecDeque<T, A> {
618 VecDeque { head: 0, len: 0, buf: RawVec::new_in(alloc) }
619 }
620
621 /// Creates an empty deque with space for at least `capacity` elements.
622 ///
623 /// # Examples
624 ///
625 /// ```
626 /// use std::collections::VecDeque;
627 ///
628 /// let deque: VecDeque<u32> = VecDeque::with_capacity(10);
629 /// ```
630 #[unstable(feature = "allocator_api", issue = "32838")]
631 #[track_caller]
632 pub fn with_capacity_in(capacity: usize, alloc: A) -> VecDeque<T, A> {
633 VecDeque { head: 0, len: 0, buf: RawVec::with_capacity_in(capacity, alloc) }
634 }
635
636 /// Creates a `VecDeque` from a raw allocation, when the initialized
637 /// part of that allocation forms a *contiguous* subslice thereof.
638 ///
639 /// For use by `vec::IntoIter::into_vecdeque`
640 ///
641 /// # Safety
642 ///
643 /// All the usual requirements on the allocated memory like in
644 /// `Vec::from_raw_parts_in`, but takes a *range* of elements that are
645 /// initialized rather than only supporting `0..len`. Requires that
646 /// `initialized.start` ≤ `initialized.end` ≤ `capacity`.
647 #[inline]
648 #[cfg(not(test))]
649 pub(crate) unsafe fn from_contiguous_raw_parts_in(
650 ptr: *mut T,
651 initialized: Range<usize>,
652 capacity: usize,
653 alloc: A,
654 ) -> Self {
655 debug_assert!(initialized.start <= initialized.end);
656 debug_assert!(initialized.end <= capacity);
657
658 // SAFETY: Our safety precondition guarantees the range length won't wrap,
659 // and that the allocation is valid for use in `RawVec`.
660 unsafe {
661 VecDeque {
662 head: initialized.start,
663 len: initialized.end.unchecked_sub(initialized.start),
664 buf: RawVec::from_raw_parts_in(ptr, capacity, alloc),
665 }
666 }
667 }
668
669 /// Provides a reference to the element at the given index.
670 ///
671 /// Element at index 0 is the front of the queue.
672 ///
673 /// # Examples
674 ///
675 /// ```
676 /// use std::collections::VecDeque;
677 ///
678 /// let mut buf = VecDeque::new();
679 /// buf.push_back(3);
680 /// buf.push_back(4);
681 /// buf.push_back(5);
682 /// buf.push_back(6);
683 /// assert_eq!(buf.get(1), Some(&4));
684 /// ```
685 #[stable(feature = "rust1", since = "1.0.0")]
686 pub fn get(&self, index: usize) -> Option<&T> {
687 if index < self.len {
688 let idx = self.to_physical_idx(index);
689 unsafe { Some(&*self.ptr().add(idx)) }
690 } else {
691 None
692 }
693 }
694
695 /// Provides a mutable reference to the element at the given index.
696 ///
697 /// Element at index 0 is the front of the queue.
698 ///
699 /// # Examples
700 ///
701 /// ```
702 /// use std::collections::VecDeque;
703 ///
704 /// let mut buf = VecDeque::new();
705 /// buf.push_back(3);
706 /// buf.push_back(4);
707 /// buf.push_back(5);
708 /// buf.push_back(6);
709 /// assert_eq!(buf[1], 4);
710 /// if let Some(elem) = buf.get_mut(1) {
711 /// *elem = 7;
712 /// }
713 /// assert_eq!(buf[1], 7);
714 /// ```
715 #[stable(feature = "rust1", since = "1.0.0")]
716 pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
717 if index < self.len {
718 let idx = self.to_physical_idx(index);
719 unsafe { Some(&mut *self.ptr().add(idx)) }
720 } else {
721 None
722 }
723 }
724
725 /// Swaps elements at indices `i` and `j`.
726 ///
727 /// `i` and `j` may be equal.
728 ///
729 /// Element at index 0 is the front of the queue.
730 ///
731 /// # Panics
732 ///
733 /// Panics if either index is out of bounds.
734 ///
735 /// # Examples
736 ///
737 /// ```
738 /// use std::collections::VecDeque;
739 ///
740 /// let mut buf = VecDeque::new();
741 /// buf.push_back(3);
742 /// buf.push_back(4);
743 /// buf.push_back(5);
744 /// assert_eq!(buf, [3, 4, 5]);
745 /// buf.swap(0, 2);
746 /// assert_eq!(buf, [5, 4, 3]);
747 /// ```
748 #[stable(feature = "rust1", since = "1.0.0")]
749 pub fn swap(&mut self, i: usize, j: usize) {
750 assert!(i < self.len());
751 assert!(j < self.len());
752 let ri = self.to_physical_idx(i);
753 let rj = self.to_physical_idx(j);
754 unsafe { ptr::swap(self.ptr().add(ri), self.ptr().add(rj)) }
755 }
756
757 /// Returns the number of elements the deque can hold without
758 /// reallocating.
759 ///
760 /// # Examples
761 ///
762 /// ```
763 /// use std::collections::VecDeque;
764 ///
765 /// let buf: VecDeque<i32> = VecDeque::with_capacity(10);
766 /// assert!(buf.capacity() >= 10);
767 /// ```
768 #[inline]
769 #[stable(feature = "rust1", since = "1.0.0")]
770 pub fn capacity(&self) -> usize {
771 if T::IS_ZST { usize::MAX } else { self.buf.capacity() }
772 }
773
774 /// Reserves the minimum capacity for at least `additional` more elements to be inserted in the
775 /// given deque. Does nothing if the capacity is already sufficient.
776 ///
777 /// Note that the allocator may give the collection more space than it requests. Therefore
778 /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future
779 /// insertions are expected.
780 ///
781 /// # Panics
782 ///
783 /// Panics if the new capacity overflows `usize`.
784 ///
785 /// # Examples
786 ///
787 /// ```
788 /// use std::collections::VecDeque;
789 ///
790 /// let mut buf: VecDeque<i32> = [1].into();
791 /// buf.reserve_exact(10);
792 /// assert!(buf.capacity() >= 11);
793 /// ```
794 ///
795 /// [`reserve`]: VecDeque::reserve
796 #[stable(feature = "rust1", since = "1.0.0")]
797 #[track_caller]
798 pub fn reserve_exact(&mut self, additional: usize) {
799 let new_cap = self.len.checked_add(additional).expect("capacity overflow");
800 let old_cap = self.capacity();
801
802 if new_cap > old_cap {
803 self.buf.reserve_exact(self.len, additional);
804 unsafe {
805 self.handle_capacity_increase(old_cap);
806 }
807 }
808 }
809
810 /// Reserves capacity for at least `additional` more elements to be inserted in the given
811 /// deque. The collection may reserve more space to speculatively avoid frequent reallocations.
812 ///
813 /// # Panics
814 ///
815 /// Panics if the new capacity overflows `usize`.
816 ///
817 /// # Examples
818 ///
819 /// ```
820 /// use std::collections::VecDeque;
821 ///
822 /// let mut buf: VecDeque<i32> = [1].into();
823 /// buf.reserve(10);
824 /// assert!(buf.capacity() >= 11);
825 /// ```
826 #[stable(feature = "rust1", since = "1.0.0")]
827 #[cfg_attr(not(test), rustc_diagnostic_item = "vecdeque_reserve")]
828 #[track_caller]
829 pub fn reserve(&mut self, additional: usize) {
830 let new_cap = self.len.checked_add(additional).expect("capacity overflow");
831 let old_cap = self.capacity();
832
833 if new_cap > old_cap {
834 // we don't need to reserve_exact(), as the size doesn't have
835 // to be a power of 2.
836 self.buf.reserve(self.len, additional);
837 unsafe {
838 self.handle_capacity_increase(old_cap);
839 }
840 }
841 }
842
843 /// Tries to reserve the minimum capacity for at least `additional` more elements to
844 /// be inserted in the given deque. After calling `try_reserve_exact`,
845 /// capacity will be greater than or equal to `self.len() + additional` if
846 /// it returns `Ok(())`. Does nothing if the capacity is already sufficient.
847 ///
848 /// Note that the allocator may give the collection more space than it
849 /// requests. Therefore, capacity can not be relied upon to be precisely
850 /// minimal. Prefer [`try_reserve`] if future insertions are expected.
851 ///
852 /// [`try_reserve`]: VecDeque::try_reserve
853 ///
854 /// # Errors
855 ///
856 /// If the capacity overflows `usize`, or the allocator reports a failure, then an error
857 /// is returned.
858 ///
859 /// # Examples
860 ///
861 /// ```
862 /// use std::collections::TryReserveError;
863 /// use std::collections::VecDeque;
864 ///
865 /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
866 /// let mut output = VecDeque::new();
867 ///
868 /// // Pre-reserve the memory, exiting if we can't
869 /// output.try_reserve_exact(data.len())?;
870 ///
871 /// // Now we know this can't OOM(Out-Of-Memory) in the middle of our complex work
872 /// output.extend(data.iter().map(|&val| {
873 /// val * 2 + 5 // very complicated
874 /// }));
875 ///
876 /// Ok(output)
877 /// }
878 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
879 /// ```
880 #[stable(feature = "try_reserve", since = "1.57.0")]
881 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
882 let new_cap =
883 self.len.checked_add(additional).ok_or(TryReserveErrorKind::CapacityOverflow)?;
884 let old_cap = self.capacity();
885
886 if new_cap > old_cap {
887 self.buf.try_reserve_exact(self.len, additional)?;
888 unsafe {
889 self.handle_capacity_increase(old_cap);
890 }
891 }
892 Ok(())
893 }
894
895 /// Tries to reserve capacity for at least `additional` more elements to be inserted
896 /// in the given deque. The collection may reserve more space to speculatively avoid
897 /// frequent reallocations. After calling `try_reserve`, capacity will be
898 /// greater than or equal to `self.len() + additional` if it returns
899 /// `Ok(())`. Does nothing if capacity is already sufficient. This method
900 /// preserves the contents even if an error occurs.
901 ///
902 /// # Errors
903 ///
904 /// If the capacity overflows `usize`, or the allocator reports a failure, then an error
905 /// is returned.
906 ///
907 /// # Examples
908 ///
909 /// ```
910 /// use std::collections::TryReserveError;
911 /// use std::collections::VecDeque;
912 ///
913 /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
914 /// let mut output = VecDeque::new();
915 ///
916 /// // Pre-reserve the memory, exiting if we can't
917 /// output.try_reserve(data.len())?;
918 ///
919 /// // Now we know this can't OOM in the middle of our complex work
920 /// output.extend(data.iter().map(|&val| {
921 /// val * 2 + 5 // very complicated
922 /// }));
923 ///
924 /// Ok(output)
925 /// }
926 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
927 /// ```
928 #[stable(feature = "try_reserve", since = "1.57.0")]
929 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
930 let new_cap =
931 self.len.checked_add(additional).ok_or(TryReserveErrorKind::CapacityOverflow)?;
932 let old_cap = self.capacity();
933
934 if new_cap > old_cap {
935 self.buf.try_reserve(self.len, additional)?;
936 unsafe {
937 self.handle_capacity_increase(old_cap);
938 }
939 }
940 Ok(())
941 }
942
943 /// Shrinks the capacity of the deque as much as possible.
944 ///
945 /// It will drop down as close as possible to the length but the allocator may still inform the
946 /// deque that there is space for a few more elements.
947 ///
948 /// # Examples
949 ///
950 /// ```
951 /// use std::collections::VecDeque;
952 ///
953 /// let mut buf = VecDeque::with_capacity(15);
954 /// buf.extend(0..4);
955 /// assert_eq!(buf.capacity(), 15);
956 /// buf.shrink_to_fit();
957 /// assert!(buf.capacity() >= 4);
958 /// ```
959 #[stable(feature = "deque_extras_15", since = "1.5.0")]
960 #[track_caller]
961 pub fn shrink_to_fit(&mut self) {
962 self.shrink_to(0);
963 }
964
965 /// Shrinks the capacity of the deque with a lower bound.
966 ///
967 /// The capacity will remain at least as large as both the length
968 /// and the supplied value.
969 ///
970 /// If the current capacity is less than the lower limit, this is a no-op.
971 ///
972 /// # Examples
973 ///
974 /// ```
975 /// use std::collections::VecDeque;
976 ///
977 /// let mut buf = VecDeque::with_capacity(15);
978 /// buf.extend(0..4);
979 /// assert_eq!(buf.capacity(), 15);
980 /// buf.shrink_to(6);
981 /// assert!(buf.capacity() >= 6);
982 /// buf.shrink_to(0);
983 /// assert!(buf.capacity() >= 4);
984 /// ```
985 #[stable(feature = "shrink_to", since = "1.56.0")]
986 #[track_caller]
987 pub fn shrink_to(&mut self, min_capacity: usize) {
988 let target_cap = min_capacity.max(self.len);
989
990 // never shrink ZSTs
991 if T::IS_ZST || self.capacity() <= target_cap {
992 return;
993 }
994
995 // There are three cases of interest:
996 // All elements are out of desired bounds
997 // Elements are contiguous, and tail is out of desired bounds
998 // Elements are discontiguous
999 //
1000 // At all other times, element positions are unaffected.
1001
1002 // `head` and `len` are at most `isize::MAX` and `target_cap < self.capacity()`, so nothing can
1003 // overflow.
1004 let tail_outside = (target_cap + 1..=self.capacity()).contains(&(self.head + self.len));
1005 // Used in the drop guard below.
1006 let old_head = self.head;
1007
1008 if self.len == 0 {
1009 self.head = 0;
1010 } else if self.head >= target_cap && tail_outside {
1011 // Head and tail are both out of bounds, so copy all of them to the front.
1012 //
1013 // H := head
1014 // L := last element
1015 // H L
1016 // [. . . . . . . . o o o o o o o . ]
1017 // H L
1018 // [o o o o o o o . ]
1019 unsafe {
1020 // nonoverlapping because `self.head >= target_cap >= self.len`.
1021 self.copy_nonoverlapping(self.head, 0, self.len);
1022 }
1023 self.head = 0;
1024 } else if self.head < target_cap && tail_outside {
1025 // Head is in bounds, tail is out of bounds.
1026 // Copy the overflowing part to the beginning of the
1027 // buffer. This won't overlap because `target_cap >= self.len`.
1028 //
1029 // H := head
1030 // L := last element
1031 // H L
1032 // [. . . o o o o o o o . . . . . . ]
1033 // L H
1034 // [o o . o o o o o ]
1035 let len = self.head + self.len - target_cap;
1036 unsafe {
1037 self.copy_nonoverlapping(target_cap, 0, len);
1038 }
1039 } else if !self.is_contiguous() {
1040 // The head slice is at least partially out of bounds, tail is in bounds.
1041 // Copy the head backwards so it lines up with the target capacity.
1042 // This won't overlap because `target_cap >= self.len`.
1043 //
1044 // H := head
1045 // L := last element
1046 // L H
1047 // [o o o o o . . . . . . . . . o o ]
1048 // L H
1049 // [o o o o o . o o ]
1050 let head_len = self.capacity() - self.head;
1051 let new_head = target_cap - head_len;
1052 unsafe {
1053 // can't use `copy_nonoverlapping()` here because the new and old
1054 // regions for the head might overlap.
1055 self.copy(self.head, new_head, head_len);
1056 }
1057 self.head = new_head;
1058 }
1059
1060 struct Guard<'a, T, A: Allocator> {
1061 deque: &'a mut VecDeque<T, A>,
1062 old_head: usize,
1063 target_cap: usize,
1064 }
1065
1066 impl<T, A: Allocator> Drop for Guard<'_, T, A> {
1067 #[cold]
1068 fn drop(&mut self) {
1069 unsafe {
1070 // SAFETY: This is only called if `buf.shrink_to_fit` unwinds,
1071 // which is the only time it's safe to call `abort_shrink`.
1072 self.deque.abort_shrink(self.old_head, self.target_cap)
1073 }
1074 }
1075 }
1076
1077 let guard = Guard { deque: self, old_head, target_cap };
1078
1079 guard.deque.buf.shrink_to_fit(target_cap);
1080
1081 // Don't drop the guard if we didn't unwind.
1082 mem::forget(guard);
1083
1084 debug_assert!(self.head < self.capacity() || self.capacity() == 0);
1085 debug_assert!(self.len <= self.capacity());
1086 }
1087
1088 /// Reverts the deque back into a consistent state in case `shrink_to` failed.
1089 /// This is necessary to prevent UB if the backing allocator returns an error
1090 /// from `shrink` and `handle_alloc_error` subsequently unwinds (see #123369).
1091 ///
1092 /// `old_head` refers to the head index before `shrink_to` was called. `target_cap`
1093 /// is the capacity that it was trying to shrink to.
1094 unsafe fn abort_shrink(&mut self, old_head: usize, target_cap: usize) {
1095 // Moral equivalent of self.head + self.len <= target_cap. Won't overflow
1096 // because `self.len <= target_cap`.
1097 if self.head <= target_cap - self.len {
1098 // The deque's buffer is contiguous, so no need to copy anything around.
1099 return;
1100 }
1101
1102 // `shrink_to` already copied the head to fit into the new capacity, so this won't overflow.
1103 let head_len = target_cap - self.head;
1104 // `self.head > target_cap - self.len` => `self.len > target_cap - self.head =: head_len` so this must be positive.
1105 let tail_len = self.len - head_len;
1106
1107 if tail_len <= cmp::min(head_len, self.capacity() - target_cap) {
1108 // There's enough spare capacity to copy the tail to the back (because `tail_len < self.capacity() - target_cap`),
1109 // and copying the tail should be cheaper than copying the head (because `tail_len <= head_len`).
1110
1111 unsafe {
1112 // The old tail and the new tail can't overlap because the head slice lies between them. The
1113 // head slice ends at `target_cap`, so that's where we copy to.
1114 self.copy_nonoverlapping(0, target_cap, tail_len);
1115 }
1116 } else {
1117 // Either there's not enough spare capacity to make the deque contiguous, or the head is shorter than the tail
1118 // (and therefore hopefully cheaper to copy).
1119 unsafe {
1120 // The old and the new head slice can overlap, so we can't use `copy_nonoverlapping` here.
1121 self.copy(self.head, old_head, head_len);
1122 self.head = old_head;
1123 }
1124 }
1125 }
1126
1127 /// Shortens the deque, keeping the first `len` elements and dropping
1128 /// the rest.
1129 ///
1130 /// If `len` is greater or equal to the deque's current length, this has
1131 /// no effect.
1132 ///
1133 /// # Examples
1134 ///
1135 /// ```
1136 /// use std::collections::VecDeque;
1137 ///
1138 /// let mut buf = VecDeque::new();
1139 /// buf.push_back(5);
1140 /// buf.push_back(10);
1141 /// buf.push_back(15);
1142 /// assert_eq!(buf, [5, 10, 15]);
1143 /// buf.truncate(1);
1144 /// assert_eq!(buf, [5]);
1145 /// ```
1146 #[stable(feature = "deque_extras", since = "1.16.0")]
1147 pub fn truncate(&mut self, len: usize) {
1148 /// Runs the destructor for all items in the slice when it gets dropped (normally or
1149 /// during unwinding).
1150 struct Dropper<'a, T>(&'a mut [T]);
1151
1152 impl<'a, T> Drop for Dropper<'a, T> {
1153 fn drop(&mut self) {
1154 unsafe {
1155 ptr::drop_in_place(self.0);
1156 }
1157 }
1158 }
1159
1160 // Safe because:
1161 //
1162 // * Any slice passed to `drop_in_place` is valid; the second case has
1163 // `len <= front.len()` and returning on `len > self.len()` ensures
1164 // `begin <= back.len()` in the first case
1165 // * The head of the VecDeque is moved before calling `drop_in_place`,
1166 // so no value is dropped twice if `drop_in_place` panics
1167 unsafe {
1168 if len >= self.len {
1169 return;
1170 }
1171
1172 let (front, back) = self.as_mut_slices();
1173 if len > front.len() {
1174 let begin = len - front.len();
1175 let drop_back = back.get_unchecked_mut(begin..) as *mut _;
1176 self.len = len;
1177 ptr::drop_in_place(drop_back);
1178 } else {
1179 let drop_back = back as *mut _;
1180 let drop_front = front.get_unchecked_mut(len..) as *mut _;
1181 self.len = len;
1182
1183 // Make sure the second half is dropped even when a destructor
1184 // in the first one panics.
1185 let _back_dropper = Dropper(&mut *drop_back);
1186 ptr::drop_in_place(drop_front);
1187 }
1188 }
1189 }
1190
1191 /// Shortens the deque, keeping the last `len` elements and dropping
1192 /// the rest.
1193 ///
1194 /// If `len` is greater or equal to the deque's current length, this has
1195 /// no effect.
1196 ///
1197 /// # Examples
1198 ///
1199 /// ```
1200 /// # #![feature(vec_deque_truncate_front)]
1201 /// use std::collections::VecDeque;
1202 ///
1203 /// let mut buf = VecDeque::new();
1204 /// buf.push_front(5);
1205 /// buf.push_front(10);
1206 /// buf.push_front(15);
1207 /// assert_eq!(buf, [15, 10, 5]);
1208 /// assert_eq!(buf.as_slices(), (&[15, 10, 5][..], &[][..]));
1209 /// buf.truncate_front(1);
1210 /// assert_eq!(buf.as_slices(), (&[5][..], &[][..]));
1211 /// ```
1212 #[unstable(feature = "vec_deque_truncate_front", issue = "140667")]
1213 pub fn truncate_front(&mut self, len: usize) {
1214 /// Runs the destructor for all items in the slice when it gets dropped (normally or
1215 /// during unwinding).
1216 struct Dropper<'a, T>(&'a mut [T]);
1217
1218 impl<'a, T> Drop for Dropper<'a, T> {
1219 fn drop(&mut self) {
1220 unsafe {
1221 ptr::drop_in_place(self.0);
1222 }
1223 }
1224 }
1225
1226 unsafe {
1227 if len >= self.len {
1228 // No action is taken
1229 return;
1230 }
1231
1232 let (front, back) = self.as_mut_slices();
1233 if len > back.len() {
1234 // The 'back' slice remains unchanged.
1235 // front.len() + back.len() == self.len, so 'end' is non-negative
1236 // and end < front.len()
1237 let end = front.len() - (len - back.len());
1238 let drop_front = front.get_unchecked_mut(..end) as *mut _;
1239 self.head += end;
1240 self.len = len;
1241 ptr::drop_in_place(drop_front);
1242 } else {
1243 let drop_front = front as *mut _;
1244 // 'end' is non-negative by the condition above
1245 let end = back.len() - len;
1246 let drop_back = back.get_unchecked_mut(..end) as *mut _;
1247 self.head = self.to_physical_idx(self.len - len);
1248 self.len = len;
1249
1250 // Make sure the second half is dropped even when a destructor
1251 // in the first one panics.
1252 let _back_dropper = Dropper(&mut *drop_back);
1253 ptr::drop_in_place(drop_front);
1254 }
1255 }
1256 }
1257
1258 /// Returns a reference to the underlying allocator.
1259 #[unstable(feature = "allocator_api", issue = "32838")]
1260 #[inline]
1261 pub fn allocator(&self) -> &A {
1262 self.buf.allocator()
1263 }
1264
1265 /// Returns a front-to-back iterator.
1266 ///
1267 /// # Examples
1268 ///
1269 /// ```
1270 /// use std::collections::VecDeque;
1271 ///
1272 /// let mut buf = VecDeque::new();
1273 /// buf.push_back(5);
1274 /// buf.push_back(3);
1275 /// buf.push_back(4);
1276 /// let b: &[_] = &[&5, &3, &4];
1277 /// let c: Vec<&i32> = buf.iter().collect();
1278 /// assert_eq!(&c[..], b);
1279 /// ```
1280 #[stable(feature = "rust1", since = "1.0.0")]
1281 #[cfg_attr(not(test), rustc_diagnostic_item = "vecdeque_iter")]
1282 pub fn iter(&self) -> Iter<'_, T> {
1283 let (a, b) = self.as_slices();
1284 Iter::new(a.iter(), b.iter())
1285 }
1286
1287 /// Returns a front-to-back iterator that returns mutable references.
1288 ///
1289 /// # Examples
1290 ///
1291 /// ```
1292 /// use std::collections::VecDeque;
1293 ///
1294 /// let mut buf = VecDeque::new();
1295 /// buf.push_back(5);
1296 /// buf.push_back(3);
1297 /// buf.push_back(4);
1298 /// for num in buf.iter_mut() {
1299 /// *num = *num - 2;
1300 /// }
1301 /// let b: &[_] = &[&mut 3, &mut 1, &mut 2];
1302 /// assert_eq!(&buf.iter_mut().collect::<Vec<&mut i32>>()[..], b);
1303 /// ```
1304 #[stable(feature = "rust1", since = "1.0.0")]
1305 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1306 let (a, b) = self.as_mut_slices();
1307 IterMut::new(a.iter_mut(), b.iter_mut())
1308 }
1309
1310 /// Returns a pair of slices which contain, in order, the contents of the
1311 /// deque.
1312 ///
1313 /// If [`make_contiguous`] was previously called, all elements of the
1314 /// deque will be in the first slice and the second slice will be empty.
1315 ///
1316 /// [`make_contiguous`]: VecDeque::make_contiguous
1317 ///
1318 /// # Examples
1319 ///
1320 /// ```
1321 /// use std::collections::VecDeque;
1322 ///
1323 /// let mut deque = VecDeque::new();
1324 ///
1325 /// deque.push_back(0);
1326 /// deque.push_back(1);
1327 /// deque.push_back(2);
1328 ///
1329 /// assert_eq!(deque.as_slices(), (&[0, 1, 2][..], &[][..]));
1330 ///
1331 /// deque.push_front(10);
1332 /// deque.push_front(9);
1333 ///
1334 /// assert_eq!(deque.as_slices(), (&[9, 10][..], &[0, 1, 2][..]));
1335 /// ```
1336 #[inline]
1337 #[stable(feature = "deque_extras_15", since = "1.5.0")]
1338 pub fn as_slices(&self) -> (&[T], &[T]) {
1339 let (a_range, b_range) = self.slice_ranges(.., self.len);
1340 // SAFETY: `slice_ranges` always returns valid ranges into
1341 // the physical buffer.
1342 unsafe { (&*self.buffer_range(a_range), &*self.buffer_range(b_range)) }
1343 }
1344
1345 /// Returns a pair of slices which contain, in order, the contents of the
1346 /// deque.
1347 ///
1348 /// If [`make_contiguous`] was previously called, all elements of the
1349 /// deque will be in the first slice and the second slice will be empty.
1350 ///
1351 /// [`make_contiguous`]: VecDeque::make_contiguous
1352 ///
1353 /// # Examples
1354 ///
1355 /// ```
1356 /// use std::collections::VecDeque;
1357 ///
1358 /// let mut deque = VecDeque::new();
1359 ///
1360 /// deque.push_back(0);
1361 /// deque.push_back(1);
1362 ///
1363 /// deque.push_front(10);
1364 /// deque.push_front(9);
1365 ///
1366 /// deque.as_mut_slices().0[0] = 42;
1367 /// deque.as_mut_slices().1[0] = 24;
1368 /// assert_eq!(deque.as_slices(), (&[42, 10][..], &[24, 1][..]));
1369 /// ```
1370 #[inline]
1371 #[stable(feature = "deque_extras_15", since = "1.5.0")]
1372 pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T]) {
1373 let (a_range, b_range) = self.slice_ranges(.., self.len);
1374 // SAFETY: `slice_ranges` always returns valid ranges into
1375 // the physical buffer.
1376 unsafe { (&mut *self.buffer_range(a_range), &mut *self.buffer_range(b_range)) }
1377 }
1378
1379 /// Returns the number of elements in the deque.
1380 ///
1381 /// # Examples
1382 ///
1383 /// ```
1384 /// use std::collections::VecDeque;
1385 ///
1386 /// let mut deque = VecDeque::new();
1387 /// assert_eq!(deque.len(), 0);
1388 /// deque.push_back(1);
1389 /// assert_eq!(deque.len(), 1);
1390 /// ```
1391 #[stable(feature = "rust1", since = "1.0.0")]
1392 #[rustc_confusables("length", "size")]
1393 pub fn len(&self) -> usize {
1394 self.len
1395 }
1396
1397 /// Returns `true` if the deque is empty.
1398 ///
1399 /// # Examples
1400 ///
1401 /// ```
1402 /// use std::collections::VecDeque;
1403 ///
1404 /// let mut deque = VecDeque::new();
1405 /// assert!(deque.is_empty());
1406 /// deque.push_front(1);
1407 /// assert!(!deque.is_empty());
1408 /// ```
1409 #[stable(feature = "rust1", since = "1.0.0")]
1410 pub fn is_empty(&self) -> bool {
1411 self.len == 0
1412 }
1413
1414 /// Given a range into the logical buffer of the deque, this function
1415 /// return two ranges into the physical buffer that correspond to
1416 /// the given range. The `len` parameter should usually just be `self.len`;
1417 /// the reason it's passed explicitly is that if the deque is wrapped in
1418 /// a `Drain`, then `self.len` is not actually the length of the deque.
1419 ///
1420 /// # Safety
1421 ///
1422 /// This function is always safe to call. For the resulting ranges to be valid
1423 /// ranges into the physical buffer, the caller must ensure that the result of
1424 /// calling `slice::range(range, ..len)` represents a valid range into the
1425 /// logical buffer, and that all elements in that range are initialized.
1426 fn slice_ranges<R>(&self, range: R, len: usize) -> (Range<usize>, Range<usize>)
1427 where
1428 R: RangeBounds<usize>,
1429 {
1430 let Range { start, end } = slice::range(range, ..len);
1431 let len = end - start;
1432
1433 if len == 0 {
1434 (0..0, 0..0)
1435 } else {
1436 // `slice::range` guarantees that `start <= end <= len`.
1437 // because `len != 0`, we know that `start < end`, so `start < len`
1438 // and the indexing is valid.
1439 let wrapped_start = self.to_physical_idx(start);
1440
1441 // this subtraction can never overflow because `wrapped_start` is
1442 // at most `self.capacity()` (and if `self.capacity != 0`, then `wrapped_start` is strictly less
1443 // than `self.capacity`).
1444 let head_len = self.capacity() - wrapped_start;
1445
1446 if head_len >= len {
1447 // we know that `len + wrapped_start <= self.capacity <= usize::MAX`, so this addition can't overflow
1448 (wrapped_start..wrapped_start + len, 0..0)
1449 } else {
1450 // can't overflow because of the if condition
1451 let tail_len = len - head_len;
1452 (wrapped_start..self.capacity(), 0..tail_len)
1453 }
1454 }
1455 }
1456
1457 /// Creates an iterator that covers the specified range in the deque.
1458 ///
1459 /// # Panics
1460 ///
1461 /// Panics if the starting point is greater than the end point or if
1462 /// the end point is greater than the length of the deque.
1463 ///
1464 /// # Examples
1465 ///
1466 /// ```
1467 /// use std::collections::VecDeque;
1468 ///
1469 /// let deque: VecDeque<_> = [1, 2, 3].into();
1470 /// let range = deque.range(2..).copied().collect::<VecDeque<_>>();
1471 /// assert_eq!(range, [3]);
1472 ///
1473 /// // A full range covers all contents
1474 /// let all = deque.range(..);
1475 /// assert_eq!(all.len(), 3);
1476 /// ```
1477 #[inline]
1478 #[stable(feature = "deque_range", since = "1.51.0")]
1479 pub fn range<R>(&self, range: R) -> Iter<'_, T>
1480 where
1481 R: RangeBounds<usize>,
1482 {
1483 let (a_range, b_range) = self.slice_ranges(range, self.len);
1484 // SAFETY: The ranges returned by `slice_ranges`
1485 // are valid ranges into the physical buffer, so
1486 // it's ok to pass them to `buffer_range` and
1487 // dereference the result.
1488 let a = unsafe { &*self.buffer_range(a_range) };
1489 let b = unsafe { &*self.buffer_range(b_range) };
1490 Iter::new(a.iter(), b.iter())
1491 }
1492
1493 /// Creates an iterator that covers the specified mutable range in the deque.
1494 ///
1495 /// # Panics
1496 ///
1497 /// Panics if the starting point is greater than the end point or if
1498 /// the end point is greater than the length of the deque.
1499 ///
1500 /// # Examples
1501 ///
1502 /// ```
1503 /// use std::collections::VecDeque;
1504 ///
1505 /// let mut deque: VecDeque<_> = [1, 2, 3].into();
1506 /// for v in deque.range_mut(2..) {
1507 /// *v *= 2;
1508 /// }
1509 /// assert_eq!(deque, [1, 2, 6]);
1510 ///
1511 /// // A full range covers all contents
1512 /// for v in deque.range_mut(..) {
1513 /// *v *= 2;
1514 /// }
1515 /// assert_eq!(deque, [2, 4, 12]);
1516 /// ```
1517 #[inline]
1518 #[stable(feature = "deque_range", since = "1.51.0")]
1519 pub fn range_mut<R>(&mut self, range: R) -> IterMut<'_, T>
1520 where
1521 R: RangeBounds<usize>,
1522 {
1523 let (a_range, b_range) = self.slice_ranges(range, self.len);
1524 // SAFETY: The ranges returned by `slice_ranges`
1525 // are valid ranges into the physical buffer, so
1526 // it's ok to pass them to `buffer_range` and
1527 // dereference the result.
1528 let a = unsafe { &mut *self.buffer_range(a_range) };
1529 let b = unsafe { &mut *self.buffer_range(b_range) };
1530 IterMut::new(a.iter_mut(), b.iter_mut())
1531 }
1532
1533 /// Removes the specified range from the deque in bulk, returning all
1534 /// removed elements as an iterator. If the iterator is dropped before
1535 /// being fully consumed, it drops the remaining removed elements.
1536 ///
1537 /// The returned iterator keeps a mutable borrow on the queue to optimize
1538 /// its implementation.
1539 ///
1540 ///
1541 /// # Panics
1542 ///
1543 /// Panics if the starting point is greater than the end point or if
1544 /// the end point is greater than the length of the deque.
1545 ///
1546 /// # Leaking
1547 ///
1548 /// If the returned iterator goes out of scope without being dropped (due to
1549 /// [`mem::forget`], for example), the deque may have lost and leaked
1550 /// elements arbitrarily, including elements outside the range.
1551 ///
1552 /// # Examples
1553 ///
1554 /// ```
1555 /// use std::collections::VecDeque;
1556 ///
1557 /// let mut deque: VecDeque<_> = [1, 2, 3].into();
1558 /// let drained = deque.drain(2..).collect::<VecDeque<_>>();
1559 /// assert_eq!(drained, [3]);
1560 /// assert_eq!(deque, [1, 2]);
1561 ///
1562 /// // A full range clears all contents, like `clear()` does
1563 /// deque.drain(..);
1564 /// assert!(deque.is_empty());
1565 /// ```
1566 #[inline]
1567 #[stable(feature = "drain", since = "1.6.0")]
1568 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
1569 where
1570 R: RangeBounds<usize>,
1571 {
1572 // Memory safety
1573 //
1574 // When the Drain is first created, the source deque is shortened to
1575 // make sure no uninitialized or moved-from elements are accessible at
1576 // all if the Drain's destructor never gets to run.
1577 //
1578 // Drain will ptr::read out the values to remove.
1579 // When finished, the remaining data will be copied back to cover the hole,
1580 // and the head/tail values will be restored correctly.
1581 //
1582 let Range { start, end } = slice::range(range, ..self.len);
1583 let drain_start = start;
1584 let drain_len = end - start;
1585
1586 // The deque's elements are parted into three segments:
1587 // * 0 -> drain_start
1588 // * drain_start -> drain_start+drain_len
1589 // * drain_start+drain_len -> self.len
1590 //
1591 // H = self.head; T = self.head+self.len; t = drain_start+drain_len; h = drain_head
1592 //
1593 // We store drain_start as self.len, and drain_len and self.len as
1594 // drain_len and orig_len respectively on the Drain. This also
1595 // truncates the effective array such that if the Drain is leaked, we
1596 // have forgotten about the potentially moved values after the start of
1597 // the drain.
1598 //
1599 // H h t T
1600 // [. . . o o x x o o . . .]
1601 //
1602 // "forget" about the values after the start of the drain until after
1603 // the drain is complete and the Drain destructor is run.
1604
1605 unsafe { Drain::new(self, drain_start, drain_len) }
1606 }
1607
1608 /// Clears the deque, removing all values.
1609 ///
1610 /// # Examples
1611 ///
1612 /// ```
1613 /// use std::collections::VecDeque;
1614 ///
1615 /// let mut deque = VecDeque::new();
1616 /// deque.push_back(1);
1617 /// deque.clear();
1618 /// assert!(deque.is_empty());
1619 /// ```
1620 #[stable(feature = "rust1", since = "1.0.0")]
1621 #[inline]
1622 pub fn clear(&mut self) {
1623 self.truncate(0);
1624 // Not strictly necessary, but leaves things in a more consistent/predictable state.
1625 self.head = 0;
1626 }
1627
1628 /// Returns `true` if the deque contains an element equal to the
1629 /// given value.
1630 ///
1631 /// This operation is *O*(*n*).
1632 ///
1633 /// Note that if you have a sorted `VecDeque`, [`binary_search`] may be faster.
1634 ///
1635 /// [`binary_search`]: VecDeque::binary_search
1636 ///
1637 /// # Examples
1638 ///
1639 /// ```
1640 /// use std::collections::VecDeque;
1641 ///
1642 /// let mut deque: VecDeque<u32> = VecDeque::new();
1643 ///
1644 /// deque.push_back(0);
1645 /// deque.push_back(1);
1646 ///
1647 /// assert_eq!(deque.contains(&1), true);
1648 /// assert_eq!(deque.contains(&10), false);
1649 /// ```
1650 #[stable(feature = "vec_deque_contains", since = "1.12.0")]
1651 pub fn contains(&self, x: &T) -> bool
1652 where
1653 T: PartialEq<T>,
1654 {
1655 let (a, b) = self.as_slices();
1656 a.contains(x) || b.contains(x)
1657 }
1658
1659 /// Provides a reference to the front element, or `None` if the deque is
1660 /// empty.
1661 ///
1662 /// # Examples
1663 ///
1664 /// ```
1665 /// use std::collections::VecDeque;
1666 ///
1667 /// let mut d = VecDeque::new();
1668 /// assert_eq!(d.front(), None);
1669 ///
1670 /// d.push_back(1);
1671 /// d.push_back(2);
1672 /// assert_eq!(d.front(), Some(&1));
1673 /// ```
1674 #[stable(feature = "rust1", since = "1.0.0")]
1675 #[rustc_confusables("first")]
1676 pub fn front(&self) -> Option<&T> {
1677 self.get(0)
1678 }
1679
1680 /// Provides a mutable reference to the front element, or `None` if the
1681 /// deque is empty.
1682 ///
1683 /// # Examples
1684 ///
1685 /// ```
1686 /// use std::collections::VecDeque;
1687 ///
1688 /// let mut d = VecDeque::new();
1689 /// assert_eq!(d.front_mut(), None);
1690 ///
1691 /// d.push_back(1);
1692 /// d.push_back(2);
1693 /// match d.front_mut() {
1694 /// Some(x) => *x = 9,
1695 /// None => (),
1696 /// }
1697 /// assert_eq!(d.front(), Some(&9));
1698 /// ```
1699 #[stable(feature = "rust1", since = "1.0.0")]
1700 pub fn front_mut(&mut self) -> Option<&mut T> {
1701 self.get_mut(0)
1702 }
1703
1704 /// Provides a reference to the back element, or `None` if the deque is
1705 /// empty.
1706 ///
1707 /// # Examples
1708 ///
1709 /// ```
1710 /// use std::collections::VecDeque;
1711 ///
1712 /// let mut d = VecDeque::new();
1713 /// assert_eq!(d.back(), None);
1714 ///
1715 /// d.push_back(1);
1716 /// d.push_back(2);
1717 /// assert_eq!(d.back(), Some(&2));
1718 /// ```
1719 #[stable(feature = "rust1", since = "1.0.0")]
1720 #[rustc_confusables("last")]
1721 pub fn back(&self) -> Option<&T> {
1722 self.get(self.len.wrapping_sub(1))
1723 }
1724
1725 /// Provides a mutable reference to the back element, or `None` if the
1726 /// deque is empty.
1727 ///
1728 /// # Examples
1729 ///
1730 /// ```
1731 /// use std::collections::VecDeque;
1732 ///
1733 /// let mut d = VecDeque::new();
1734 /// assert_eq!(d.back(), None);
1735 ///
1736 /// d.push_back(1);
1737 /// d.push_back(2);
1738 /// match d.back_mut() {
1739 /// Some(x) => *x = 9,
1740 /// None => (),
1741 /// }
1742 /// assert_eq!(d.back(), Some(&9));
1743 /// ```
1744 #[stable(feature = "rust1", since = "1.0.0")]
1745 pub fn back_mut(&mut self) -> Option<&mut T> {
1746 self.get_mut(self.len.wrapping_sub(1))
1747 }
1748
1749 /// Removes the first element and returns it, or `None` if the deque is
1750 /// empty.
1751 ///
1752 /// # Examples
1753 ///
1754 /// ```
1755 /// use std::collections::VecDeque;
1756 ///
1757 /// let mut d = VecDeque::new();
1758 /// d.push_back(1);
1759 /// d.push_back(2);
1760 ///
1761 /// assert_eq!(d.pop_front(), Some(1));
1762 /// assert_eq!(d.pop_front(), Some(2));
1763 /// assert_eq!(d.pop_front(), None);
1764 /// ```
1765 #[stable(feature = "rust1", since = "1.0.0")]
1766 pub fn pop_front(&mut self) -> Option<T> {
1767 if self.is_empty() {
1768 None
1769 } else {
1770 let old_head = self.head;
1771 self.head = self.to_physical_idx(1);
1772 self.len -= 1;
1773 unsafe {
1774 core::hint::assert_unchecked(self.len < self.capacity());
1775 Some(self.buffer_read(old_head))
1776 }
1777 }
1778 }
1779
1780 /// Removes the last element from the deque and returns it, or `None` if
1781 /// it is empty.
1782 ///
1783 /// # Examples
1784 ///
1785 /// ```
1786 /// use std::collections::VecDeque;
1787 ///
1788 /// let mut buf = VecDeque::new();
1789 /// assert_eq!(buf.pop_back(), None);
1790 /// buf.push_back(1);
1791 /// buf.push_back(3);
1792 /// assert_eq!(buf.pop_back(), Some(3));
1793 /// ```
1794 #[stable(feature = "rust1", since = "1.0.0")]
1795 pub fn pop_back(&mut self) -> Option<T> {
1796 if self.is_empty() {
1797 None
1798 } else {
1799 self.len -= 1;
1800 unsafe {
1801 core::hint::assert_unchecked(self.len < self.capacity());
1802 Some(self.buffer_read(self.to_physical_idx(self.len)))
1803 }
1804 }
1805 }
1806
1807 /// Removes and returns the first element from the deque if the predicate
1808 /// returns `true`, or [`None`] if the predicate returns false or the deque
1809 /// is empty (the predicate will not be called in that case).
1810 ///
1811 /// # Examples
1812 ///
1813 /// ```
1814 /// #![feature(vec_deque_pop_if)]
1815 /// use std::collections::VecDeque;
1816 ///
1817 /// let mut deque: VecDeque<i32> = vec![0, 1, 2, 3, 4].into();
1818 /// let pred = |x: &mut i32| *x % 2 == 0;
1819 ///
1820 /// assert_eq!(deque.pop_front_if(pred), Some(0));
1821 /// assert_eq!(deque, [1, 2, 3, 4]);
1822 /// assert_eq!(deque.pop_front_if(pred), None);
1823 /// ```
1824 #[unstable(feature = "vec_deque_pop_if", issue = "135889")]
1825 pub fn pop_front_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
1826 let first = self.front_mut()?;
1827 if predicate(first) { self.pop_front() } else { None }
1828 }
1829
1830 /// Removes and returns the last element from the deque if the predicate
1831 /// returns `true`, or [`None`] if the predicate returns false or the deque
1832 /// is empty (the predicate will not be called in that case).
1833 ///
1834 /// # Examples
1835 ///
1836 /// ```
1837 /// #![feature(vec_deque_pop_if)]
1838 /// use std::collections::VecDeque;
1839 ///
1840 /// let mut deque: VecDeque<i32> = vec![0, 1, 2, 3, 4].into();
1841 /// let pred = |x: &mut i32| *x % 2 == 0;
1842 ///
1843 /// assert_eq!(deque.pop_back_if(pred), Some(4));
1844 /// assert_eq!(deque, [0, 1, 2, 3]);
1845 /// assert_eq!(deque.pop_back_if(pred), None);
1846 /// ```
1847 #[unstable(feature = "vec_deque_pop_if", issue = "135889")]
1848 pub fn pop_back_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
1849 let first = self.back_mut()?;
1850 if predicate(first) { self.pop_back() } else { None }
1851 }
1852
1853 /// Prepends an element to the deque.
1854 ///
1855 /// # Examples
1856 ///
1857 /// ```
1858 /// use std::collections::VecDeque;
1859 ///
1860 /// let mut d = VecDeque::new();
1861 /// d.push_front(1);
1862 /// d.push_front(2);
1863 /// assert_eq!(d.front(), Some(&2));
1864 /// ```
1865 #[stable(feature = "rust1", since = "1.0.0")]
1866 #[track_caller]
1867 pub fn push_front(&mut self, value: T) {
1868 if self.is_full() {
1869 self.grow();
1870 }
1871
1872 self.head = self.wrap_sub(self.head, 1);
1873 self.len += 1;
1874
1875 unsafe {
1876 self.buffer_write(self.head, value);
1877 }
1878 }
1879
1880 /// Appends an element to the back of the deque.
1881 ///
1882 /// # Examples
1883 ///
1884 /// ```
1885 /// use std::collections::VecDeque;
1886 ///
1887 /// let mut buf = VecDeque::new();
1888 /// buf.push_back(1);
1889 /// buf.push_back(3);
1890 /// assert_eq!(3, *buf.back().unwrap());
1891 /// ```
1892 #[stable(feature = "rust1", since = "1.0.0")]
1893 #[rustc_confusables("push", "put", "append")]
1894 #[track_caller]
1895 pub fn push_back(&mut self, value: T) {
1896 if self.is_full() {
1897 self.grow();
1898 }
1899
1900 unsafe { self.buffer_write(self.to_physical_idx(self.len), value) }
1901 self.len += 1;
1902 }
1903
1904 #[inline]
1905 fn is_contiguous(&self) -> bool {
1906 // Do the calculation like this to avoid overflowing if len + head > usize::MAX
1907 self.head <= self.capacity() - self.len
1908 }
1909
1910 /// Removes an element from anywhere in the deque and returns it,
1911 /// replacing it with the first element.
1912 ///
1913 /// This does not preserve ordering, but is *O*(1).
1914 ///
1915 /// Returns `None` if `index` is out of bounds.
1916 ///
1917 /// Element at index 0 is the front of the queue.
1918 ///
1919 /// # Examples
1920 ///
1921 /// ```
1922 /// use std::collections::VecDeque;
1923 ///
1924 /// let mut buf = VecDeque::new();
1925 /// assert_eq!(buf.swap_remove_front(0), None);
1926 /// buf.push_back(1);
1927 /// buf.push_back(2);
1928 /// buf.push_back(3);
1929 /// assert_eq!(buf, [1, 2, 3]);
1930 ///
1931 /// assert_eq!(buf.swap_remove_front(2), Some(3));
1932 /// assert_eq!(buf, [2, 1]);
1933 /// ```
1934 #[stable(feature = "deque_extras_15", since = "1.5.0")]
1935 pub fn swap_remove_front(&mut self, index: usize) -> Option<T> {
1936 let length = self.len;
1937 if index < length && index != 0 {
1938 self.swap(index, 0);
1939 } else if index >= length {
1940 return None;
1941 }
1942 self.pop_front()
1943 }
1944
1945 /// Removes an element from anywhere in the deque and returns it,
1946 /// replacing it with the last element.
1947 ///
1948 /// This does not preserve ordering, but is *O*(1).
1949 ///
1950 /// Returns `None` if `index` is out of bounds.
1951 ///
1952 /// Element at index 0 is the front of the queue.
1953 ///
1954 /// # Examples
1955 ///
1956 /// ```
1957 /// use std::collections::VecDeque;
1958 ///
1959 /// let mut buf = VecDeque::new();
1960 /// assert_eq!(buf.swap_remove_back(0), None);
1961 /// buf.push_back(1);
1962 /// buf.push_back(2);
1963 /// buf.push_back(3);
1964 /// assert_eq!(buf, [1, 2, 3]);
1965 ///
1966 /// assert_eq!(buf.swap_remove_back(0), Some(1));
1967 /// assert_eq!(buf, [3, 2]);
1968 /// ```
1969 #[stable(feature = "deque_extras_15", since = "1.5.0")]
1970 pub fn swap_remove_back(&mut self, index: usize) -> Option<T> {
1971 let length = self.len;
1972 if length > 0 && index < length - 1 {
1973 self.swap(index, length - 1);
1974 } else if index >= length {
1975 return None;
1976 }
1977 self.pop_back()
1978 }
1979
1980 /// Inserts an element at `index` within the deque, shifting all elements
1981 /// with indices greater than or equal to `index` towards the back.
1982 ///
1983 /// Element at index 0 is the front of the queue.
1984 ///
1985 /// # Panics
1986 ///
1987 /// Panics if `index` is strictly greater than deque's length
1988 ///
1989 /// # Examples
1990 ///
1991 /// ```
1992 /// use std::collections::VecDeque;
1993 ///
1994 /// let mut vec_deque = VecDeque::new();
1995 /// vec_deque.push_back('a');
1996 /// vec_deque.push_back('b');
1997 /// vec_deque.push_back('c');
1998 /// assert_eq!(vec_deque, &['a', 'b', 'c']);
1999 ///
2000 /// vec_deque.insert(1, 'd');
2001 /// assert_eq!(vec_deque, &['a', 'd', 'b', 'c']);
2002 ///
2003 /// vec_deque.insert(4, 'e');
2004 /// assert_eq!(vec_deque, &['a', 'd', 'b', 'c', 'e']);
2005 /// ```
2006 #[stable(feature = "deque_extras_15", since = "1.5.0")]
2007 #[track_caller]
2008 pub fn insert(&mut self, index: usize, value: T) {
2009 assert!(index <= self.len(), "index out of bounds");
2010 if self.is_full() {
2011 self.grow();
2012 }
2013
2014 let k = self.len - index;
2015 if k < index {
2016 // `index + 1` can't overflow, because if index was usize::MAX, then either the
2017 // assert would've failed, or the deque would've tried to grow past usize::MAX
2018 // and panicked.
2019 unsafe {
2020 // see `remove()` for explanation why this wrap_copy() call is safe.
2021 self.wrap_copy(self.to_physical_idx(index), self.to_physical_idx(index + 1), k);
2022 self.buffer_write(self.to_physical_idx(index), value);
2023 self.len += 1;
2024 }
2025 } else {
2026 let old_head = self.head;
2027 self.head = self.wrap_sub(self.head, 1);
2028 unsafe {
2029 self.wrap_copy(old_head, self.head, index);
2030 self.buffer_write(self.to_physical_idx(index), value);
2031 self.len += 1;
2032 }
2033 }
2034 }
2035
2036 /// Removes and returns the element at `index` from the deque.
2037 /// Whichever end is closer to the removal point will be moved to make
2038 /// room, and all the affected elements will be moved to new positions.
2039 /// Returns `None` if `index` is out of bounds.
2040 ///
2041 /// Element at index 0 is the front of the queue.
2042 ///
2043 /// # Examples
2044 ///
2045 /// ```
2046 /// use std::collections::VecDeque;
2047 ///
2048 /// let mut buf = VecDeque::new();
2049 /// buf.push_back('a');
2050 /// buf.push_back('b');
2051 /// buf.push_back('c');
2052 /// assert_eq!(buf, ['a', 'b', 'c']);
2053 ///
2054 /// assert_eq!(buf.remove(1), Some('b'));
2055 /// assert_eq!(buf, ['a', 'c']);
2056 /// ```
2057 #[stable(feature = "rust1", since = "1.0.0")]
2058 #[rustc_confusables("delete", "take")]
2059 pub fn remove(&mut self, index: usize) -> Option<T> {
2060 if self.len <= index {
2061 return None;
2062 }
2063
2064 let wrapped_idx = self.to_physical_idx(index);
2065
2066 let elem = unsafe { Some(self.buffer_read(wrapped_idx)) };
2067
2068 let k = self.len - index - 1;
2069 // safety: due to the nature of the if-condition, whichever wrap_copy gets called,
2070 // its length argument will be at most `self.len / 2`, so there can't be more than
2071 // one overlapping area.
2072 if k < index {
2073 unsafe { self.wrap_copy(self.wrap_add(wrapped_idx, 1), wrapped_idx, k) };
2074 self.len -= 1;
2075 } else {
2076 let old_head = self.head;
2077 self.head = self.to_physical_idx(1);
2078 unsafe { self.wrap_copy(old_head, self.head, index) };
2079 self.len -= 1;
2080 }
2081
2082 elem
2083 }
2084
2085 /// Splits the deque into two at the given index.
2086 ///
2087 /// Returns a newly allocated `VecDeque`. `self` contains elements `[0, at)`,
2088 /// and the returned deque contains elements `[at, len)`.
2089 ///
2090 /// Note that the capacity of `self` does not change.
2091 ///
2092 /// Element at index 0 is the front of the queue.
2093 ///
2094 /// # Panics
2095 ///
2096 /// Panics if `at > len`.
2097 ///
2098 /// # Examples
2099 ///
2100 /// ```
2101 /// use std::collections::VecDeque;
2102 ///
2103 /// let mut buf: VecDeque<_> = ['a', 'b', 'c'].into();
2104 /// let buf2 = buf.split_off(1);
2105 /// assert_eq!(buf, ['a']);
2106 /// assert_eq!(buf2, ['b', 'c']);
2107 /// ```
2108 #[inline]
2109 #[must_use = "use `.truncate()` if you don't need the other half"]
2110 #[stable(feature = "split_off", since = "1.4.0")]
2111 #[track_caller]
2112 pub fn split_off(&mut self, at: usize) -> Self
2113 where
2114 A: Clone,
2115 {
2116 let len = self.len;
2117 assert!(at <= len, "`at` out of bounds");
2118
2119 let other_len = len - at;
2120 let mut other = VecDeque::with_capacity_in(other_len, self.allocator().clone());
2121
2122 unsafe {
2123 let (first_half, second_half) = self.as_slices();
2124
2125 let first_len = first_half.len();
2126 let second_len = second_half.len();
2127 if at < first_len {
2128 // `at` lies in the first half.
2129 let amount_in_first = first_len - at;
2130
2131 ptr::copy_nonoverlapping(first_half.as_ptr().add(at), other.ptr(), amount_in_first);
2132
2133 // just take all of the second half.
2134 ptr::copy_nonoverlapping(
2135 second_half.as_ptr(),
2136 other.ptr().add(amount_in_first),
2137 second_len,
2138 );
2139 } else {
2140 // `at` lies in the second half, need to factor in the elements we skipped
2141 // in the first half.
2142 let offset = at - first_len;
2143 let amount_in_second = second_len - offset;
2144 ptr::copy_nonoverlapping(
2145 second_half.as_ptr().add(offset),
2146 other.ptr(),
2147 amount_in_second,
2148 );
2149 }
2150 }
2151
2152 // Cleanup where the ends of the buffers are
2153 self.len = at;
2154 other.len = other_len;
2155
2156 other
2157 }
2158
2159 /// Moves all the elements of `other` into `self`, leaving `other` empty.
2160 ///
2161 /// # Panics
2162 ///
2163 /// Panics if the new number of elements in self overflows a `usize`.
2164 ///
2165 /// # Examples
2166 ///
2167 /// ```
2168 /// use std::collections::VecDeque;
2169 ///
2170 /// let mut buf: VecDeque<_> = [1, 2].into();
2171 /// let mut buf2: VecDeque<_> = [3, 4].into();
2172 /// buf.append(&mut buf2);
2173 /// assert_eq!(buf, [1, 2, 3, 4]);
2174 /// assert_eq!(buf2, []);
2175 /// ```
2176 #[inline]
2177 #[stable(feature = "append", since = "1.4.0")]
2178 #[track_caller]
2179 pub fn append(&mut self, other: &mut Self) {
2180 if T::IS_ZST {
2181 self.len = self.len.checked_add(other.len).expect("capacity overflow");
2182 other.len = 0;
2183 other.head = 0;
2184 return;
2185 }
2186
2187 self.reserve(other.len);
2188 unsafe {
2189 let (left, right) = other.as_slices();
2190 self.copy_slice(self.to_physical_idx(self.len), left);
2191 // no overflow, because self.capacity() >= old_cap + left.len() >= self.len + left.len()
2192 self.copy_slice(self.to_physical_idx(self.len + left.len()), right);
2193 }
2194 // SAFETY: Update pointers after copying to avoid leaving doppelganger
2195 // in case of panics.
2196 self.len += other.len;
2197 // Now that we own its values, forget everything in `other`.
2198 other.len = 0;
2199 other.head = 0;
2200 }
2201
2202 /// Retains only the elements specified by the predicate.
2203 ///
2204 /// In other words, remove all elements `e` for which `f(&e)` returns false.
2205 /// This method operates in place, visiting each element exactly once in the
2206 /// original order, and preserves the order of the retained elements.
2207 ///
2208 /// # Examples
2209 ///
2210 /// ```
2211 /// use std::collections::VecDeque;
2212 ///
2213 /// let mut buf = VecDeque::new();
2214 /// buf.extend(1..5);
2215 /// buf.retain(|&x| x % 2 == 0);
2216 /// assert_eq!(buf, [2, 4]);
2217 /// ```
2218 ///
2219 /// Because the elements are visited exactly once in the original order,
2220 /// external state may be used to decide which elements to keep.
2221 ///
2222 /// ```
2223 /// use std::collections::VecDeque;
2224 ///
2225 /// let mut buf = VecDeque::new();
2226 /// buf.extend(1..6);
2227 ///
2228 /// let keep = [false, true, true, false, true];
2229 /// let mut iter = keep.iter();
2230 /// buf.retain(|_| *iter.next().unwrap());
2231 /// assert_eq!(buf, [2, 3, 5]);
2232 /// ```
2233 #[stable(feature = "vec_deque_retain", since = "1.4.0")]
2234 pub fn retain<F>(&mut self, mut f: F)
2235 where
2236 F: FnMut(&T) -> bool,
2237 {
2238 self.retain_mut(|elem| f(elem));
2239 }
2240
2241 /// Retains only the elements specified by the predicate.
2242 ///
2243 /// In other words, remove all elements `e` for which `f(&mut e)` returns false.
2244 /// This method operates in place, visiting each element exactly once in the
2245 /// original order, and preserves the order of the retained elements.
2246 ///
2247 /// # Examples
2248 ///
2249 /// ```
2250 /// use std::collections::VecDeque;
2251 ///
2252 /// let mut buf = VecDeque::new();
2253 /// buf.extend(1..5);
2254 /// buf.retain_mut(|x| if *x % 2 == 0 {
2255 /// *x += 1;
2256 /// true
2257 /// } else {
2258 /// false
2259 /// });
2260 /// assert_eq!(buf, [3, 5]);
2261 /// ```
2262 #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2263 pub fn retain_mut<F>(&mut self, mut f: F)
2264 where
2265 F: FnMut(&mut T) -> bool,
2266 {
2267 let len = self.len;
2268 let mut idx = 0;
2269 let mut cur = 0;
2270
2271 // Stage 1: All values are retained.
2272 while cur < len {
2273 if !f(&mut self[cur]) {
2274 cur += 1;
2275 break;
2276 }
2277 cur += 1;
2278 idx += 1;
2279 }
2280 // Stage 2: Swap retained value into current idx.
2281 while cur < len {
2282 if !f(&mut self[cur]) {
2283 cur += 1;
2284 continue;
2285 }
2286
2287 self.swap(idx, cur);
2288 cur += 1;
2289 idx += 1;
2290 }
2291 // Stage 3: Truncate all values after idx.
2292 if cur != idx {
2293 self.truncate(idx);
2294 }
2295 }
2296
2297 // Double the buffer size. This method is inline(never), so we expect it to only
2298 // be called in cold paths.
2299 // This may panic or abort
2300 #[inline(never)]
2301 #[track_caller]
2302 fn grow(&mut self) {
2303 // Extend or possibly remove this assertion when valid use-cases for growing the
2304 // buffer without it being full emerge
2305 debug_assert!(self.is_full());
2306 let old_cap = self.capacity();
2307 self.buf.grow_one();
2308 unsafe {
2309 self.handle_capacity_increase(old_cap);
2310 }
2311 debug_assert!(!self.is_full());
2312 }
2313
2314 /// Modifies the deque in-place so that `len()` is equal to `new_len`,
2315 /// either by removing excess elements from the back or by appending
2316 /// elements generated by calling `generator` to the back.
2317 ///
2318 /// # Examples
2319 ///
2320 /// ```
2321 /// use std::collections::VecDeque;
2322 ///
2323 /// let mut buf = VecDeque::new();
2324 /// buf.push_back(5);
2325 /// buf.push_back(10);
2326 /// buf.push_back(15);
2327 /// assert_eq!(buf, [5, 10, 15]);
2328 ///
2329 /// buf.resize_with(5, Default::default);
2330 /// assert_eq!(buf, [5, 10, 15, 0, 0]);
2331 ///
2332 /// buf.resize_with(2, || unreachable!());
2333 /// assert_eq!(buf, [5, 10]);
2334 ///
2335 /// let mut state = 100;
2336 /// buf.resize_with(5, || { state += 1; state });
2337 /// assert_eq!(buf, [5, 10, 101, 102, 103]);
2338 /// ```
2339 #[stable(feature = "vec_resize_with", since = "1.33.0")]
2340 #[track_caller]
2341 pub fn resize_with(&mut self, new_len: usize, generator: impl FnMut() -> T) {
2342 let len = self.len;
2343
2344 if new_len > len {
2345 self.extend(repeat_with(generator).take(new_len - len))
2346 } else {
2347 self.truncate(new_len);
2348 }
2349 }
2350
2351 /// Rearranges the internal storage of this deque so it is one contiguous
2352 /// slice, which is then returned.
2353 ///
2354 /// This method does not allocate and does not change the order of the
2355 /// inserted elements. As it returns a mutable slice, this can be used to
2356 /// sort a deque.
2357 ///
2358 /// Once the internal storage is contiguous, the [`as_slices`] and
2359 /// [`as_mut_slices`] methods will return the entire contents of the
2360 /// deque in a single slice.
2361 ///
2362 /// [`as_slices`]: VecDeque::as_slices
2363 /// [`as_mut_slices`]: VecDeque::as_mut_slices
2364 ///
2365 /// # Examples
2366 ///
2367 /// Sorting the content of a deque.
2368 ///
2369 /// ```
2370 /// use std::collections::VecDeque;
2371 ///
2372 /// let mut buf = VecDeque::with_capacity(15);
2373 ///
2374 /// buf.push_back(2);
2375 /// buf.push_back(1);
2376 /// buf.push_front(3);
2377 ///
2378 /// // sorting the deque
2379 /// buf.make_contiguous().sort();
2380 /// assert_eq!(buf.as_slices(), (&[1, 2, 3] as &[_], &[] as &[_]));
2381 ///
2382 /// // sorting it in reverse order
2383 /// buf.make_contiguous().sort_by(|a, b| b.cmp(a));
2384 /// assert_eq!(buf.as_slices(), (&[3, 2, 1] as &[_], &[] as &[_]));
2385 /// ```
2386 ///
2387 /// Getting immutable access to the contiguous slice.
2388 ///
2389 /// ```rust
2390 /// use std::collections::VecDeque;
2391 ///
2392 /// let mut buf = VecDeque::new();
2393 ///
2394 /// buf.push_back(2);
2395 /// buf.push_back(1);
2396 /// buf.push_front(3);
2397 ///
2398 /// buf.make_contiguous();
2399 /// if let (slice, &[]) = buf.as_slices() {
2400 /// // we can now be sure that `slice` contains all elements of the deque,
2401 /// // while still having immutable access to `buf`.
2402 /// assert_eq!(buf.len(), slice.len());
2403 /// assert_eq!(slice, &[3, 2, 1] as &[_]);
2404 /// }
2405 /// ```
2406 #[stable(feature = "deque_make_contiguous", since = "1.48.0")]
2407 pub fn make_contiguous(&mut self) -> &mut [T] {
2408 if T::IS_ZST {
2409 self.head = 0;
2410 }
2411
2412 if self.is_contiguous() {
2413 unsafe { return slice::from_raw_parts_mut(self.ptr().add(self.head), self.len) }
2414 }
2415
2416 let &mut Self { head, len, .. } = self;
2417 let ptr = self.ptr();
2418 let cap = self.capacity();
2419
2420 let free = cap - len;
2421 let head_len = cap - head;
2422 let tail = len - head_len;
2423 let tail_len = tail;
2424
2425 if free >= head_len {
2426 // there is enough free space to copy the head in one go,
2427 // this means that we first shift the tail backwards, and then
2428 // copy the head to the correct position.
2429 //
2430 // from: DEFGH....ABC
2431 // to: ABCDEFGH....
2432 unsafe {
2433 self.copy(0, head_len, tail_len);
2434 // ...DEFGH.ABC
2435 self.copy_nonoverlapping(head, 0, head_len);
2436 // ABCDEFGH....
2437 }
2438
2439 self.head = 0;
2440 } else if free >= tail_len {
2441 // there is enough free space to copy the tail in one go,
2442 // this means that we first shift the head forwards, and then
2443 // copy the tail to the correct position.
2444 //
2445 // from: FGH....ABCDE
2446 // to: ...ABCDEFGH.
2447 unsafe {
2448 self.copy(head, tail, head_len);
2449 // FGHABCDE....
2450 self.copy_nonoverlapping(0, tail + head_len, tail_len);
2451 // ...ABCDEFGH.
2452 }
2453
2454 self.head = tail;
2455 } else {
2456 // `free` is smaller than both `head_len` and `tail_len`.
2457 // the general algorithm for this first moves the slices
2458 // right next to each other and then uses `slice::rotate`
2459 // to rotate them into place:
2460 //
2461 // initially: HIJK..ABCDEFG
2462 // step 1: ..HIJKABCDEFG
2463 // step 2: ..ABCDEFGHIJK
2464 //
2465 // or:
2466 //
2467 // initially: FGHIJK..ABCDE
2468 // step 1: FGHIJKABCDE..
2469 // step 2: ABCDEFGHIJK..
2470
2471 // pick the shorter of the 2 slices to reduce the amount
2472 // of memory that needs to be moved around.
2473 if head_len > tail_len {
2474 // tail is shorter, so:
2475 // 1. copy tail forwards
2476 // 2. rotate used part of the buffer
2477 // 3. update head to point to the new beginning (which is just `free`)
2478
2479 unsafe {
2480 // if there is no free space in the buffer, then the slices are already
2481 // right next to each other and we don't need to move any memory.
2482 if free != 0 {
2483 // because we only move the tail forward as much as there's free space
2484 // behind it, we don't overwrite any elements of the head slice, and
2485 // the slices end up right next to each other.
2486 self.copy(0, free, tail_len);
2487 }
2488
2489 // We just copied the tail right next to the head slice,
2490 // so all of the elements in the range are initialized
2491 let slice = &mut *self.buffer_range(free..self.capacity());
2492
2493 // because the deque wasn't contiguous, we know that `tail_len < self.len == slice.len()`,
2494 // so this will never panic.
2495 slice.rotate_left(tail_len);
2496
2497 // the used part of the buffer now is `free..self.capacity()`, so set
2498 // `head` to the beginning of that range.
2499 self.head = free;
2500 }
2501 } else {
2502 // head is shorter so:
2503 // 1. copy head backwards
2504 // 2. rotate used part of the buffer
2505 // 3. update head to point to the new beginning (which is the beginning of the buffer)
2506
2507 unsafe {
2508 // if there is no free space in the buffer, then the slices are already
2509 // right next to each other and we don't need to move any memory.
2510 if free != 0 {
2511 // copy the head slice to lie right behind the tail slice.
2512 self.copy(self.head, tail_len, head_len);
2513 }
2514
2515 // because we copied the head slice so that both slices lie right
2516 // next to each other, all the elements in the range are initialized.
2517 let slice = &mut *self.buffer_range(0..self.len);
2518
2519 // because the deque wasn't contiguous, we know that `head_len < self.len == slice.len()`
2520 // so this will never panic.
2521 slice.rotate_right(head_len);
2522
2523 // the used part of the buffer now is `0..self.len`, so set
2524 // `head` to the beginning of that range.
2525 self.head = 0;
2526 }
2527 }
2528 }
2529
2530 unsafe { slice::from_raw_parts_mut(ptr.add(self.head), self.len) }
2531 }
2532
2533 /// Rotates the double-ended queue `n` places to the left.
2534 ///
2535 /// Equivalently,
2536 /// - Rotates item `n` into the first position.
2537 /// - Pops the first `n` items and pushes them to the end.
2538 /// - Rotates `len() - n` places to the right.
2539 ///
2540 /// # Panics
2541 ///
2542 /// If `n` is greater than `len()`. Note that `n == len()`
2543 /// does _not_ panic and is a no-op rotation.
2544 ///
2545 /// # Complexity
2546 ///
2547 /// Takes `*O*(min(n, len() - n))` time and no extra space.
2548 ///
2549 /// # Examples
2550 ///
2551 /// ```
2552 /// use std::collections::VecDeque;
2553 ///
2554 /// let mut buf: VecDeque<_> = (0..10).collect();
2555 ///
2556 /// buf.rotate_left(3);
2557 /// assert_eq!(buf, [3, 4, 5, 6, 7, 8, 9, 0, 1, 2]);
2558 ///
2559 /// for i in 1..10 {
2560 /// assert_eq!(i * 3 % 10, buf[0]);
2561 /// buf.rotate_left(3);
2562 /// }
2563 /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
2564 /// ```
2565 #[stable(feature = "vecdeque_rotate", since = "1.36.0")]
2566 pub fn rotate_left(&mut self, n: usize) {
2567 assert!(n <= self.len());
2568 let k = self.len - n;
2569 if n <= k {
2570 unsafe { self.rotate_left_inner(n) }
2571 } else {
2572 unsafe { self.rotate_right_inner(k) }
2573 }
2574 }
2575
2576 /// Rotates the double-ended queue `n` places to the right.
2577 ///
2578 /// Equivalently,
2579 /// - Rotates the first item into position `n`.
2580 /// - Pops the last `n` items and pushes them to the front.
2581 /// - Rotates `len() - n` places to the left.
2582 ///
2583 /// # Panics
2584 ///
2585 /// If `n` is greater than `len()`. Note that `n == len()`
2586 /// does _not_ panic and is a no-op rotation.
2587 ///
2588 /// # Complexity
2589 ///
2590 /// Takes `*O*(min(n, len() - n))` time and no extra space.
2591 ///
2592 /// # Examples
2593 ///
2594 /// ```
2595 /// use std::collections::VecDeque;
2596 ///
2597 /// let mut buf: VecDeque<_> = (0..10).collect();
2598 ///
2599 /// buf.rotate_right(3);
2600 /// assert_eq!(buf, [7, 8, 9, 0, 1, 2, 3, 4, 5, 6]);
2601 ///
2602 /// for i in 1..10 {
2603 /// assert_eq!(0, buf[i * 3 % 10]);
2604 /// buf.rotate_right(3);
2605 /// }
2606 /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
2607 /// ```
2608 #[stable(feature = "vecdeque_rotate", since = "1.36.0")]
2609 pub fn rotate_right(&mut self, n: usize) {
2610 assert!(n <= self.len());
2611 let k = self.len - n;
2612 if n <= k {
2613 unsafe { self.rotate_right_inner(n) }
2614 } else {
2615 unsafe { self.rotate_left_inner(k) }
2616 }
2617 }
2618
2619 // SAFETY: the following two methods require that the rotation amount
2620 // be less than half the length of the deque.
2621 //
2622 // `wrap_copy` requires that `min(x, capacity() - x) + copy_len <= capacity()`,
2623 // but then `min` is never more than half the capacity, regardless of x,
2624 // so it's sound to call here because we're calling with something
2625 // less than half the length, which is never above half the capacity.
2626
2627 unsafe fn rotate_left_inner(&mut self, mid: usize) {
2628 debug_assert!(mid * 2 <= self.len());
2629 unsafe {
2630 self.wrap_copy(self.head, self.to_physical_idx(self.len), mid);
2631 }
2632 self.head = self.to_physical_idx(mid);
2633 }
2634
2635 unsafe fn rotate_right_inner(&mut self, k: usize) {
2636 debug_assert!(k * 2 <= self.len());
2637 self.head = self.wrap_sub(self.head, k);
2638 unsafe {
2639 self.wrap_copy(self.to_physical_idx(self.len), self.head, k);
2640 }
2641 }
2642
2643 /// Binary searches this `VecDeque` for a given element.
2644 /// If the `VecDeque` is not sorted, the returned result is unspecified and
2645 /// meaningless.
2646 ///
2647 /// If the value is found then [`Result::Ok`] is returned, containing the
2648 /// index of the matching element. If there are multiple matches, then any
2649 /// one of the matches could be returned. If the value is not found then
2650 /// [`Result::Err`] is returned, containing the index where a matching
2651 /// element could be inserted while maintaining sorted order.
2652 ///
2653 /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
2654 ///
2655 /// [`binary_search_by`]: VecDeque::binary_search_by
2656 /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
2657 /// [`partition_point`]: VecDeque::partition_point
2658 ///
2659 /// # Examples
2660 ///
2661 /// Looks up a series of four elements. The first is found, with a
2662 /// uniquely determined position; the second and third are not
2663 /// found; the fourth could match any position in `[1, 4]`.
2664 ///
2665 /// ```
2666 /// use std::collections::VecDeque;
2667 ///
2668 /// let deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
2669 ///
2670 /// assert_eq!(deque.binary_search(&13), Ok(9));
2671 /// assert_eq!(deque.binary_search(&4), Err(7));
2672 /// assert_eq!(deque.binary_search(&100), Err(13));
2673 /// let r = deque.binary_search(&1);
2674 /// assert!(matches!(r, Ok(1..=4)));
2675 /// ```
2676 ///
2677 /// If you want to insert an item to a sorted deque, while maintaining
2678 /// sort order, consider using [`partition_point`]:
2679 ///
2680 /// ```
2681 /// use std::collections::VecDeque;
2682 ///
2683 /// let mut deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
2684 /// let num = 42;
2685 /// let idx = deque.partition_point(|&x| x <= num);
2686 /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
2687 /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` may allow `insert`
2688 /// // to shift less elements.
2689 /// deque.insert(idx, num);
2690 /// assert_eq!(deque, &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2691 /// ```
2692 #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
2693 #[inline]
2694 pub fn binary_search(&self, x: &T) -> Result<usize, usize>
2695 where
2696 T: Ord,
2697 {
2698 self.binary_search_by(|e| e.cmp(x))
2699 }
2700
2701 /// Binary searches this `VecDeque` with a comparator function.
2702 ///
2703 /// The comparator function should return an order code that indicates
2704 /// whether its argument is `Less`, `Equal` or `Greater` the desired
2705 /// target.
2706 /// If the `VecDeque` is not sorted or if the comparator function does not
2707 /// implement an order consistent with the sort order of the underlying
2708 /// `VecDeque`, the returned result is unspecified and meaningless.
2709 ///
2710 /// If the value is found then [`Result::Ok`] is returned, containing the
2711 /// index of the matching element. If there are multiple matches, then any
2712 /// one of the matches could be returned. If the value is not found then
2713 /// [`Result::Err`] is returned, containing the index where a matching
2714 /// element could be inserted while maintaining sorted order.
2715 ///
2716 /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
2717 ///
2718 /// [`binary_search`]: VecDeque::binary_search
2719 /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
2720 /// [`partition_point`]: VecDeque::partition_point
2721 ///
2722 /// # Examples
2723 ///
2724 /// Looks up a series of four elements. The first is found, with a
2725 /// uniquely determined position; the second and third are not
2726 /// found; the fourth could match any position in `[1, 4]`.
2727 ///
2728 /// ```
2729 /// use std::collections::VecDeque;
2730 ///
2731 /// let deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
2732 ///
2733 /// assert_eq!(deque.binary_search_by(|x| x.cmp(&13)), Ok(9));
2734 /// assert_eq!(deque.binary_search_by(|x| x.cmp(&4)), Err(7));
2735 /// assert_eq!(deque.binary_search_by(|x| x.cmp(&100)), Err(13));
2736 /// let r = deque.binary_search_by(|x| x.cmp(&1));
2737 /// assert!(matches!(r, Ok(1..=4)));
2738 /// ```
2739 #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
2740 pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
2741 where
2742 F: FnMut(&'a T) -> Ordering,
2743 {
2744 let (front, back) = self.as_slices();
2745 let cmp_back = back.first().map(|elem| f(elem));
2746
2747 if let Some(Ordering::Equal) = cmp_back {
2748 Ok(front.len())
2749 } else if let Some(Ordering::Less) = cmp_back {
2750 back.binary_search_by(f).map(|idx| idx + front.len()).map_err(|idx| idx + front.len())
2751 } else {
2752 front.binary_search_by(f)
2753 }
2754 }
2755
2756 /// Binary searches this `VecDeque` with a key extraction function.
2757 ///
2758 /// Assumes that the deque is sorted by the key, for instance with
2759 /// [`make_contiguous().sort_by_key()`] using the same key extraction function.
2760 /// If the deque is not sorted by the key, the returned result is
2761 /// unspecified and meaningless.
2762 ///
2763 /// If the value is found then [`Result::Ok`] is returned, containing the
2764 /// index of the matching element. If there are multiple matches, then any
2765 /// one of the matches could be returned. If the value is not found then
2766 /// [`Result::Err`] is returned, containing the index where a matching
2767 /// element could be inserted while maintaining sorted order.
2768 ///
2769 /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
2770 ///
2771 /// [`make_contiguous().sort_by_key()`]: VecDeque::make_contiguous
2772 /// [`binary_search`]: VecDeque::binary_search
2773 /// [`binary_search_by`]: VecDeque::binary_search_by
2774 /// [`partition_point`]: VecDeque::partition_point
2775 ///
2776 /// # Examples
2777 ///
2778 /// Looks up a series of four elements in a slice of pairs sorted by
2779 /// their second elements. The first is found, with a uniquely
2780 /// determined position; the second and third are not found; the
2781 /// fourth could match any position in `[1, 4]`.
2782 ///
2783 /// ```
2784 /// use std::collections::VecDeque;
2785 ///
2786 /// let deque: VecDeque<_> = [(0, 0), (2, 1), (4, 1), (5, 1),
2787 /// (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
2788 /// (1, 21), (2, 34), (4, 55)].into();
2789 ///
2790 /// assert_eq!(deque.binary_search_by_key(&13, |&(a, b)| b), Ok(9));
2791 /// assert_eq!(deque.binary_search_by_key(&4, |&(a, b)| b), Err(7));
2792 /// assert_eq!(deque.binary_search_by_key(&100, |&(a, b)| b), Err(13));
2793 /// let r = deque.binary_search_by_key(&1, |&(a, b)| b);
2794 /// assert!(matches!(r, Ok(1..=4)));
2795 /// ```
2796 #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
2797 #[inline]
2798 pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
2799 where
2800 F: FnMut(&'a T) -> B,
2801 B: Ord,
2802 {
2803 self.binary_search_by(|k| f(k).cmp(b))
2804 }
2805
2806 /// Returns the index of the partition point according to the given predicate
2807 /// (the index of the first element of the second partition).
2808 ///
2809 /// The deque is assumed to be partitioned according to the given predicate.
2810 /// This means that all elements for which the predicate returns true are at the start of the deque
2811 /// and all elements for which the predicate returns false are at the end.
2812 /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0`
2813 /// (all odd numbers are at the start, all even at the end).
2814 ///
2815 /// If the deque is not partitioned, the returned result is unspecified and meaningless,
2816 /// as this method performs a kind of binary search.
2817 ///
2818 /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
2819 ///
2820 /// [`binary_search`]: VecDeque::binary_search
2821 /// [`binary_search_by`]: VecDeque::binary_search_by
2822 /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
2823 ///
2824 /// # Examples
2825 ///
2826 /// ```
2827 /// use std::collections::VecDeque;
2828 ///
2829 /// let deque: VecDeque<_> = [1, 2, 3, 3, 5, 6, 7].into();
2830 /// let i = deque.partition_point(|&x| x < 5);
2831 ///
2832 /// assert_eq!(i, 4);
2833 /// assert!(deque.iter().take(i).all(|&x| x < 5));
2834 /// assert!(deque.iter().skip(i).all(|&x| !(x < 5)));
2835 /// ```
2836 ///
2837 /// If you want to insert an item to a sorted deque, while maintaining
2838 /// sort order:
2839 ///
2840 /// ```
2841 /// use std::collections::VecDeque;
2842 ///
2843 /// let mut deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
2844 /// let num = 42;
2845 /// let idx = deque.partition_point(|&x| x < num);
2846 /// deque.insert(idx, num);
2847 /// assert_eq!(deque, &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2848 /// ```
2849 #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
2850 pub fn partition_point<P>(&self, mut pred: P) -> usize
2851 where
2852 P: FnMut(&T) -> bool,
2853 {
2854 let (front, back) = self.as_slices();
2855
2856 if let Some(true) = back.first().map(|v| pred(v)) {
2857 back.partition_point(pred) + front.len()
2858 } else {
2859 front.partition_point(pred)
2860 }
2861 }
2862}
2863
2864impl<T: Clone, A: Allocator> VecDeque<T, A> {
2865 /// Modifies the deque in-place so that `len()` is equal to new_len,
2866 /// either by removing excess elements from the back or by appending clones of `value`
2867 /// to the back.
2868 ///
2869 /// # Examples
2870 ///
2871 /// ```
2872 /// use std::collections::VecDeque;
2873 ///
2874 /// let mut buf = VecDeque::new();
2875 /// buf.push_back(5);
2876 /// buf.push_back(10);
2877 /// buf.push_back(15);
2878 /// assert_eq!(buf, [5, 10, 15]);
2879 ///
2880 /// buf.resize(2, 0);
2881 /// assert_eq!(buf, [5, 10]);
2882 ///
2883 /// buf.resize(5, 20);
2884 /// assert_eq!(buf, [5, 10, 20, 20, 20]);
2885 /// ```
2886 #[stable(feature = "deque_extras", since = "1.16.0")]
2887 #[track_caller]
2888 pub fn resize(&mut self, new_len: usize, value: T) {
2889 if new_len > self.len() {
2890 let extra = new_len - self.len();
2891 self.extend(repeat_n(value, extra))
2892 } else {
2893 self.truncate(new_len);
2894 }
2895 }
2896}
2897
2898/// Returns the index in the underlying buffer for a given logical element index.
2899#[inline]
2900fn wrap_index(logical_index: usize, capacity: usize) -> usize {
2901 debug_assert!(
2902 (logical_index == 0 && capacity == 0)
2903 || logical_index < capacity
2904 || (logical_index - capacity) < capacity
2905 );
2906 if logical_index >= capacity { logical_index - capacity } else { logical_index }
2907}
2908
2909#[stable(feature = "rust1", since = "1.0.0")]
2910impl<T: PartialEq, A: Allocator> PartialEq for VecDeque<T, A> {
2911 fn eq(&self, other: &Self) -> bool {
2912 if self.len != other.len() {
2913 return false;
2914 }
2915 let (sa, sb) = self.as_slices();
2916 let (oa, ob) = other.as_slices();
2917 if sa.len() == oa.len() {
2918 sa == oa && sb == ob
2919 } else if sa.len() < oa.len() {
2920 // Always divisible in three sections, for example:
2921 // self: [a b c|d e f]
2922 // other: [0 1 2 3|4 5]
2923 // front = 3, mid = 1,
2924 // [a b c] == [0 1 2] && [d] == [3] && [e f] == [4 5]
2925 let front = sa.len();
2926 let mid = oa.len() - front;
2927
2928 let (oa_front, oa_mid) = oa.split_at(front);
2929 let (sb_mid, sb_back) = sb.split_at(mid);
2930 debug_assert_eq!(sa.len(), oa_front.len());
2931 debug_assert_eq!(sb_mid.len(), oa_mid.len());
2932 debug_assert_eq!(sb_back.len(), ob.len());
2933 sa == oa_front && sb_mid == oa_mid && sb_back == ob
2934 } else {
2935 let front = oa.len();
2936 let mid = sa.len() - front;
2937
2938 let (sa_front, sa_mid) = sa.split_at(front);
2939 let (ob_mid, ob_back) = ob.split_at(mid);
2940 debug_assert_eq!(sa_front.len(), oa.len());
2941 debug_assert_eq!(sa_mid.len(), ob_mid.len());
2942 debug_assert_eq!(sb.len(), ob_back.len());
2943 sa_front == oa && sa_mid == ob_mid && sb == ob_back
2944 }
2945 }
2946}
2947
2948#[stable(feature = "rust1", since = "1.0.0")]
2949impl<T: Eq, A: Allocator> Eq for VecDeque<T, A> {}
2950
2951__impl_slice_eq1! { [] VecDeque<T, A>, Vec<U, A>, }
2952__impl_slice_eq1! { [] VecDeque<T, A>, &[U], }
2953__impl_slice_eq1! { [] VecDeque<T, A>, &mut [U], }
2954__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, [U; N], }
2955__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, &[U; N], }
2956__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, &mut [U; N], }
2957
2958#[stable(feature = "rust1", since = "1.0.0")]
2959impl<T: PartialOrd, A: Allocator> PartialOrd for VecDeque<T, A> {
2960 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2961 self.iter().partial_cmp(other.iter())
2962 }
2963}
2964
2965#[stable(feature = "rust1", since = "1.0.0")]
2966impl<T: Ord, A: Allocator> Ord for VecDeque<T, A> {
2967 #[inline]
2968 fn cmp(&self, other: &Self) -> Ordering {
2969 self.iter().cmp(other.iter())
2970 }
2971}
2972
2973#[stable(feature = "rust1", since = "1.0.0")]
2974impl<T: Hash, A: Allocator> Hash for VecDeque<T, A> {
2975 fn hash<H: Hasher>(&self, state: &mut H) {
2976 state.write_length_prefix(self.len);
2977 // It's not possible to use Hash::hash_slice on slices
2978 // returned by as_slices method as their length can vary
2979 // in otherwise identical deques.
2980 //
2981 // Hasher only guarantees equivalence for the exact same
2982 // set of calls to its methods.
2983 self.iter().for_each(|elem| elem.hash(state));
2984 }
2985}
2986
2987#[stable(feature = "rust1", since = "1.0.0")]
2988impl<T, A: Allocator> Index<usize> for VecDeque<T, A> {
2989 type Output = T;
2990
2991 #[inline]
2992 fn index(&self, index: usize) -> &T {
2993 self.get(index).expect("Out of bounds access")
2994 }
2995}
2996
2997#[stable(feature = "rust1", since = "1.0.0")]
2998impl<T, A: Allocator> IndexMut<usize> for VecDeque<T, A> {
2999 #[inline]
3000 fn index_mut(&mut self, index: usize) -> &mut T {
3001 self.get_mut(index).expect("Out of bounds access")
3002 }
3003}
3004
3005#[stable(feature = "rust1", since = "1.0.0")]
3006impl<T> FromIterator<T> for VecDeque<T> {
3007 #[track_caller]
3008 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> VecDeque<T> {
3009 SpecFromIter::spec_from_iter(iter.into_iter())
3010 }
3011}
3012
3013#[stable(feature = "rust1", since = "1.0.0")]
3014impl<T, A: Allocator> IntoIterator for VecDeque<T, A> {
3015 type Item = T;
3016 type IntoIter = IntoIter<T, A>;
3017
3018 /// Consumes the deque into a front-to-back iterator yielding elements by
3019 /// value.
3020 fn into_iter(self) -> IntoIter<T, A> {
3021 IntoIter::new(self)
3022 }
3023}
3024
3025#[stable(feature = "rust1", since = "1.0.0")]
3026impl<'a, T, A: Allocator> IntoIterator for &'a VecDeque<T, A> {
3027 type Item = &'a T;
3028 type IntoIter = Iter<'a, T>;
3029
3030 fn into_iter(self) -> Iter<'a, T> {
3031 self.iter()
3032 }
3033}
3034
3035#[stable(feature = "rust1", since = "1.0.0")]
3036impl<'a, T, A: Allocator> IntoIterator for &'a mut VecDeque<T, A> {
3037 type Item = &'a mut T;
3038 type IntoIter = IterMut<'a, T>;
3039
3040 fn into_iter(self) -> IterMut<'a, T> {
3041 self.iter_mut()
3042 }
3043}
3044
3045#[stable(feature = "rust1", since = "1.0.0")]
3046impl<T, A: Allocator> Extend<T> for VecDeque<T, A> {
3047 #[track_caller]
3048 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3049 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter());
3050 }
3051
3052 #[inline]
3053 #[track_caller]
3054 fn extend_one(&mut self, elem: T) {
3055 self.push_back(elem);
3056 }
3057
3058 #[inline]
3059 #[track_caller]
3060 fn extend_reserve(&mut self, additional: usize) {
3061 self.reserve(additional);
3062 }
3063
3064 #[inline]
3065 unsafe fn extend_one_unchecked(&mut self, item: T) {
3066 // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3067 unsafe {
3068 self.push_unchecked(item);
3069 }
3070 }
3071}
3072
3073#[stable(feature = "extend_ref", since = "1.2.0")]
3074impl<'a, T: 'a + Copy, A: Allocator> Extend<&'a T> for VecDeque<T, A> {
3075 #[track_caller]
3076 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3077 self.spec_extend(iter.into_iter());
3078 }
3079
3080 #[inline]
3081 #[track_caller]
3082 fn extend_one(&mut self, &elem: &'a T) {
3083 self.push_back(elem);
3084 }
3085
3086 #[inline]
3087 #[track_caller]
3088 fn extend_reserve(&mut self, additional: usize) {
3089 self.reserve(additional);
3090 }
3091
3092 #[inline]
3093 unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
3094 // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3095 unsafe {
3096 self.push_unchecked(item);
3097 }
3098 }
3099}
3100
3101#[stable(feature = "rust1", since = "1.0.0")]
3102impl<T: fmt::Debug, A: Allocator> fmt::Debug for VecDeque<T, A> {
3103 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3104 f.debug_list().entries(self.iter()).finish()
3105 }
3106}
3107
3108#[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")]
3109impl<T, A: Allocator> From<Vec<T, A>> for VecDeque<T, A> {
3110 /// Turn a [`Vec<T>`] into a [`VecDeque<T>`].
3111 ///
3112 /// [`Vec<T>`]: crate::vec::Vec
3113 /// [`VecDeque<T>`]: crate::collections::VecDeque
3114 ///
3115 /// This conversion is guaranteed to run in *O*(1) time
3116 /// and to not re-allocate the `Vec`'s buffer or allocate
3117 /// any additional memory.
3118 #[inline]
3119 fn from(other: Vec<T, A>) -> Self {
3120 let (ptr, len, cap, alloc) = other.into_raw_parts_with_alloc();
3121 Self { head: 0, len, buf: unsafe { RawVec::from_raw_parts_in(ptr, cap, alloc) } }
3122 }
3123}
3124
3125#[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")]
3126impl<T, A: Allocator> From<VecDeque<T, A>> for Vec<T, A> {
3127 /// Turn a [`VecDeque<T>`] into a [`Vec<T>`].
3128 ///
3129 /// [`Vec<T>`]: crate::vec::Vec
3130 /// [`VecDeque<T>`]: crate::collections::VecDeque
3131 ///
3132 /// This never needs to re-allocate, but does need to do *O*(*n*) data movement if
3133 /// the circular buffer doesn't happen to be at the beginning of the allocation.
3134 ///
3135 /// # Examples
3136 ///
3137 /// ```
3138 /// use std::collections::VecDeque;
3139 ///
3140 /// // This one is *O*(1).
3141 /// let deque: VecDeque<_> = (1..5).collect();
3142 /// let ptr = deque.as_slices().0.as_ptr();
3143 /// let vec = Vec::from(deque);
3144 /// assert_eq!(vec, [1, 2, 3, 4]);
3145 /// assert_eq!(vec.as_ptr(), ptr);
3146 ///
3147 /// // This one needs data rearranging.
3148 /// let mut deque: VecDeque<_> = (1..5).collect();
3149 /// deque.push_front(9);
3150 /// deque.push_front(8);
3151 /// let ptr = deque.as_slices().1.as_ptr();
3152 /// let vec = Vec::from(deque);
3153 /// assert_eq!(vec, [8, 9, 1, 2, 3, 4]);
3154 /// assert_eq!(vec.as_ptr(), ptr);
3155 /// ```
3156 fn from(mut other: VecDeque<T, A>) -> Self {
3157 other.make_contiguous();
3158
3159 unsafe {
3160 let other = ManuallyDrop::new(other);
3161 let buf = other.buf.ptr();
3162 let len = other.len();
3163 let cap = other.capacity();
3164 let alloc = ptr::read(other.allocator());
3165
3166 if other.head != 0 {
3167 ptr::copy(buf.add(other.head), buf, len);
3168 }
3169 Vec::from_raw_parts_in(buf, len, cap, alloc)
3170 }
3171 }
3172}
3173
3174#[stable(feature = "std_collections_from_array", since = "1.56.0")]
3175impl<T, const N: usize> From<[T; N]> for VecDeque<T> {
3176 /// Converts a `[T; N]` into a `VecDeque<T>`.
3177 ///
3178 /// ```
3179 /// use std::collections::VecDeque;
3180 ///
3181 /// let deq1 = VecDeque::from([1, 2, 3, 4]);
3182 /// let deq2: VecDeque<_> = [1, 2, 3, 4].into();
3183 /// assert_eq!(deq1, deq2);
3184 /// ```
3185 #[track_caller]
3186 fn from(arr: [T; N]) -> Self {
3187 let mut deq = VecDeque::with_capacity(N);
3188 let arr = ManuallyDrop::new(arr);
3189 if !<T>::IS_ZST {
3190 // SAFETY: VecDeque::with_capacity ensures that there is enough capacity.
3191 unsafe {
3192 ptr::copy_nonoverlapping(arr.as_ptr(), deq.ptr(), N);
3193 }
3194 }
3195 deq.head = 0;
3196 deq.len = N;
3197 deq
3198 }
3199}